Properties

Label 20.8.10331767877...5625.1
Degree $20$
Signature $[8, 6]$
Discriminant $3^{6}\cdot 5^{16}\cdot 23^{6}\cdot 89^{4}$
Root discriminant $31.67$
Ramified primes $3, 5, 23, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T794

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -5, 4, 35, 2, -150, 96, 550, -752, -100, 734, -460, -213, 135, -44, -30, -57, -25, -1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^18 - 25*x^17 - 57*x^16 - 30*x^15 - 44*x^14 + 135*x^13 - 213*x^12 - 460*x^11 + 734*x^10 - 100*x^9 - 752*x^8 + 550*x^7 + 96*x^6 - 150*x^5 + 2*x^4 + 35*x^3 + 4*x^2 - 5*x - 1)
 
gp: K = bnfinit(x^20 - x^18 - 25*x^17 - 57*x^16 - 30*x^15 - 44*x^14 + 135*x^13 - 213*x^12 - 460*x^11 + 734*x^10 - 100*x^9 - 752*x^8 + 550*x^7 + 96*x^6 - 150*x^5 + 2*x^4 + 35*x^3 + 4*x^2 - 5*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{18} - 25 x^{17} - 57 x^{16} - 30 x^{15} - 44 x^{14} + 135 x^{13} - 213 x^{12} - 460 x^{11} + 734 x^{10} - 100 x^{9} - 752 x^{8} + 550 x^{7} + 96 x^{6} - 150 x^{5} + 2 x^{4} + 35 x^{3} + 4 x^{2} - 5 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1033176787766327594146728515625=3^{6}\cdot 5^{16}\cdot 23^{6}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 23, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{337863226679795313425111} a^{19} + \frac{26715679866272356368861}{337863226679795313425111} a^{18} - \frac{83349932688555648501208}{337863226679795313425111} a^{17} - \frac{48438573200247603635627}{337863226679795313425111} a^{16} - \frac{63179785989178564787044}{337863226679795313425111} a^{15} - \frac{150828681122844982959774}{337863226679795313425111} a^{14} + \frac{26603742656037123125549}{337863226679795313425111} a^{13} - \frac{35159406958425188069047}{337863226679795313425111} a^{12} - \frac{110695253343579150525536}{337863226679795313425111} a^{11} + \frac{36251393218233934009507}{337863226679795313425111} a^{10} - \frac{47070688536560480096985}{337863226679795313425111} a^{9} - \frac{127890312945519461128648}{337863226679795313425111} a^{8} + \frac{148110487131795607346825}{337863226679795313425111} a^{7} - \frac{159934646560201894265898}{337863226679795313425111} a^{6} - \frac{165986140081000488757243}{337863226679795313425111} a^{5} + \frac{63568445586970745568580}{337863226679795313425111} a^{4} - \frac{47477324092420057564367}{337863226679795313425111} a^{3} - \frac{63345294962166240009227}{337863226679795313425111} a^{2} + \frac{16683787354899024768234}{337863226679795313425111} a + \frac{108656445688440879274824}{337863226679795313425111}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23213294.2371 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T794:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 138 conjugacy class representatives for t20n794 are not computed
Character table for t20n794 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.8.6.1$x^{8} + 9 x^{4} + 36$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
$5$5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.12.10.1$x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$$6$$2$$10$$D_6$$[\ ]_{6}^{2}$
$23$23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.8.4.1$x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$89$89.3.0.1$x^{3} - x + 7$$1$$3$$0$$C_3$$[\ ]^{3}$
89.3.0.1$x^{3} - x + 7$$1$$3$$0$$C_3$$[\ ]^{3}$
89.3.0.1$x^{3} - x + 7$$1$$3$$0$$C_3$$[\ ]^{3}$
89.3.0.1$x^{3} - x + 7$$1$$3$$0$$C_3$$[\ ]^{3}$
89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$