Normalized defining polynomial
\( x^{20} + 8 x^{18} - 110 x^{16} - 716 x^{14} + 648 x^{12} + 6814 x^{10} + 5839 x^{8} - 7926 x^{6} - 12330 x^{4} - 4340 x^{2} - 289 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9194738203964790047763420536341504=-\,2^{10}\cdot 17^{4}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{6} a^{6} + \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{12} a^{15} + \frac{1}{6} a^{13} - \frac{1}{4} a^{12} - \frac{1}{6} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{6} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{14436} a^{16} + \frac{97}{2406} a^{14} - \frac{1}{4} a^{13} + \frac{214}{1203} a^{12} - \frac{1}{4} a^{11} + \frac{433}{14436} a^{10} - \frac{1}{2} a^{9} + \frac{919}{3609} a^{8} + \frac{1}{4} a^{7} - \frac{6893}{14436} a^{6} + \frac{1}{4} a^{5} + \frac{275}{7218} a^{4} + \frac{1}{4} a^{3} + \frac{147}{802} a^{2} - \frac{1}{4} a + \frac{587}{3609}$, $\frac{1}{14436} a^{17} + \frac{97}{2406} a^{15} - \frac{1}{12} a^{14} + \frac{214}{1203} a^{13} + \frac{1}{12} a^{12} + \frac{433}{14436} a^{11} + \frac{1}{6} a^{10} + \frac{919}{3609} a^{9} - \frac{1}{4} a^{8} - \frac{6893}{14436} a^{7} - \frac{1}{12} a^{6} + \frac{275}{7218} a^{5} - \frac{1}{4} a^{4} + \frac{147}{802} a^{3} + \frac{5}{12} a^{2} + \frac{587}{3609} a + \frac{1}{3}$, $\frac{1}{29790044297676} a^{18} + \frac{103733254}{7447511074419} a^{16} + \frac{40085092595}{551667486994} a^{14} - \frac{1}{4} a^{13} + \frac{371218686473}{14895022148838} a^{12} - \frac{2583162854089}{29790044297676} a^{10} - \frac{1}{2} a^{9} + \frac{6459675923855}{29790044297676} a^{8} - \frac{1}{4} a^{7} - \frac{13821024700837}{29790044297676} a^{6} - \frac{1}{2} a^{5} - \frac{14682686456981}{29790044297676} a^{4} - \frac{1}{4} a^{3} + \frac{4446362928743}{29790044297676} a^{2} + \frac{7441400376965}{29790044297676}$, $\frac{1}{506430753060492} a^{19} + \frac{103733254}{126607688265123} a^{17} - \frac{35323187927}{56270083673388} a^{15} - \frac{1}{12} a^{14} + \frac{21286890720757}{126607688265123} a^{13} + \frac{1}{12} a^{12} - \frac{86988288364171}{506430753060492} a^{11} - \frac{1}{12} a^{10} + \frac{126113770689841}{253215376530246} a^{9} - \frac{1}{4} a^{8} + \frac{125199182021651}{506430753060492} a^{7} + \frac{5}{12} a^{6} - \frac{107882742733147}{253215376530246} a^{5} - \frac{1}{2} a^{4} - \frac{228908984069719}{506430753060492} a^{3} - \frac{1}{12} a^{2} - \frac{12418629154819}{506430753060492} a + \frac{1}{12}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 946884579.508 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n852 are not computed |
| Character table for t20n852 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.2996537422978289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.14 | $x^{10} + 5 x^{8} - 50 x^{6} - 58 x^{4} + 49 x^{2} + 21$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||