Normalized defining polynomial
\( x^{20} - 4 x^{18} - 20 x^{17} - 33 x^{16} - 8 x^{15} + 96 x^{14} + 484 x^{13} + 1272 x^{12} + 2344 x^{11} + 2252 x^{10} - 1580 x^{9} - 11586 x^{8} - 30456 x^{7} - 58856 x^{6} - 91508 x^{5} - 111125 x^{4} - 99528 x^{3} - 60976 x^{2} - 22704 x - 3881 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-85587764130284320444535887888384=-\,2^{50}\cdot 31^{5}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4}$, $\frac{1}{33019761240038709160318432088} a^{19} + \frac{621192320687968184619267561}{16509880620019354580159216044} a^{18} + \frac{799099587216142977557818957}{16509880620019354580159216044} a^{17} + \frac{156866721478460946848851225}{4127470155004838645039804011} a^{16} - \frac{189864503141094298958622590}{4127470155004838645039804011} a^{15} - \frac{918829412804120910842902079}{4127470155004838645039804011} a^{14} - \frac{3636331641832368025580829559}{16509880620019354580159216044} a^{13} - \frac{1483102567005974079892007953}{8254940310009677290079608022} a^{12} - \frac{1357954407626937445422865047}{8254940310009677290079608022} a^{11} + \frac{1476819322484790317034254218}{4127470155004838645039804011} a^{10} - \frac{6409392179953227850223446213}{16509880620019354580159216044} a^{9} - \frac{1804864811543631973879852789}{4127470155004838645039804011} a^{8} + \frac{5115386914657442142562306075}{16509880620019354580159216044} a^{7} - \frac{1830109930975541120298655253}{8254940310009677290079608022} a^{6} - \frac{3068864729738237375014121923}{16509880620019354580159216044} a^{5} + \frac{2537815757765763548676487919}{8254940310009677290079608022} a^{4} - \frac{7973156890470784790747632323}{33019761240038709160318432088} a^{3} + \frac{6169620599966794982908878409}{16509880620019354580159216044} a^{2} - \frac{1172120830598428055525910410}{4127470155004838645039804011} a + \frac{1433430015610572587651616749}{4127470155004838645039804011}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315279863.18 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.28.26 | $x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{8} + 4 x^{6} + 4 x^{5} + 2$ | $12$ | $1$ | $28$ | $C_2 \times S_4$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||