Properties

Label 20.6.84297516676...9375.2
Degree $20$
Signature $[6, 7]$
Discriminant $-\,5^{10}\cdot 71^{5}\cdot 263^{4}$
Root discriminant $19.78$
Ramified primes $5, 71, 263$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1036

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, 11, -10, -56, -60, 59, 192, 15, -217, -74, 145, 162, -140, -143, 172, -11, -63, 39, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 39*x^18 - 63*x^17 - 11*x^16 + 172*x^15 - 143*x^14 - 140*x^13 + 162*x^12 + 145*x^11 - 74*x^10 - 217*x^9 + 15*x^8 + 192*x^7 + 59*x^6 - 60*x^5 - 56*x^4 - 10*x^3 + 11*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 39*x^18 - 63*x^17 - 11*x^16 + 172*x^15 - 143*x^14 - 140*x^13 + 162*x^12 + 145*x^11 - 74*x^10 - 217*x^9 + 15*x^8 + 192*x^7 + 59*x^6 - 60*x^5 - 56*x^4 - 10*x^3 + 11*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 39 x^{18} - 63 x^{17} - 11 x^{16} + 172 x^{15} - 143 x^{14} - 140 x^{13} + 162 x^{12} + 145 x^{11} - 74 x^{10} - 217 x^{9} + 15 x^{8} + 192 x^{7} + 59 x^{6} - 60 x^{5} - 56 x^{4} - 10 x^{3} + 11 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-84297516676069491318359375=-\,5^{10}\cdot 71^{5}\cdot 263^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 71, 263$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{334957350143} a^{19} + \frac{123494383251}{334957350143} a^{18} - \frac{35113658297}{334957350143} a^{17} - \frac{101701920519}{334957350143} a^{16} + \frac{66568312194}{334957350143} a^{15} - \frac{85260203895}{334957350143} a^{14} - \frac{108214991695}{334957350143} a^{13} - \frac{120503618450}{334957350143} a^{12} + \frac{109184129592}{334957350143} a^{11} + \frac{99081454224}{334957350143} a^{10} - \frac{121921436479}{334957350143} a^{9} - \frac{162357012225}{334957350143} a^{8} + \frac{62689426103}{334957350143} a^{7} + \frac{118447929009}{334957350143} a^{6} - \frac{133230055080}{334957350143} a^{5} + \frac{123739685415}{334957350143} a^{4} - \frac{159414057544}{334957350143} a^{3} + \frac{6231551704}{334957350143} a^{2} + \frac{8428169636}{25765950011} a - \frac{162016316378}{334957350143}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 155509.326068 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1036:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 396 conjugacy class representatives for t20n1036 are not computed
Character table for t20n1036 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.1089627903125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R $20$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ $20$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$71$$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.6.5.2$x^{6} + 142$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
71.6.0.1$x^{6} - 2 x + 13$$1$$6$$0$$C_6$$[\ ]^{6}$
263Data not computed