Normalized defining polynomial
\( x^{20} - 3 x^{19} + 6 x^{18} + 13 x^{17} - 83 x^{16} + 158 x^{15} - 36 x^{14} - 663 x^{13} + 1656 x^{12} - 1364 x^{11} - 1727 x^{10} + 5936 x^{9} - 7493 x^{8} + 4040 x^{7} + 876 x^{6} - 10785 x^{5} + 18605 x^{4} - 12047 x^{3} + 2869 x^{2} + x - 61 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-83510262074750967216189850187=-\,13^{10}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2761} a^{18} - \frac{181}{2761} a^{17} + \frac{908}{2761} a^{16} + \frac{1151}{2761} a^{15} - \frac{36}{2761} a^{14} + \frac{1183}{2761} a^{13} + \frac{114}{2761} a^{12} - \frac{1358}{2761} a^{11} + \frac{361}{2761} a^{10} + \frac{87}{2761} a^{9} + \frac{52}{251} a^{8} + \frac{1370}{2761} a^{7} + \frac{514}{2761} a^{6} + \frac{1159}{2761} a^{5} - \frac{906}{2761} a^{4} - \frac{510}{2761} a^{3} - \frac{795}{2761} a^{2} + \frac{112}{251} a - \frac{786}{2761}$, $\frac{1}{1312515329409926775002047772907203} a^{19} + \frac{12958278314428562516494380502}{1312515329409926775002047772907203} a^{18} - \frac{33635903951172930529252468199141}{1312515329409926775002047772907203} a^{17} - \frac{116107437184265659908283186196489}{1312515329409926775002047772907203} a^{16} - \frac{423515973614275608483398770494412}{1312515329409926775002047772907203} a^{15} - \frac{109143660713743251778928792420335}{1312515329409926775002047772907203} a^{14} + \frac{494827400450823621995010102596365}{1312515329409926775002047772907203} a^{13} - \frac{616808059850247578946989523373222}{1312515329409926775002047772907203} a^{12} - \frac{467087466797397806000576254469163}{1312515329409926775002047772907203} a^{11} + \frac{526353661480069433927452257687162}{1312515329409926775002047772907203} a^{10} - \frac{30531086249140301414718667812361}{119319575400902434091095252082473} a^{9} - \frac{412930612781340789798709946862000}{1312515329409926775002047772907203} a^{8} - \frac{379038055505480603061362453763274}{1312515329409926775002047772907203} a^{7} + \frac{157497646929469260620378893339722}{1312515329409926775002047772907203} a^{6} + \frac{557036163287883189907635676229364}{1312515329409926775002047772907203} a^{5} - \frac{437903841937447524188411848247287}{1312515329409926775002047772907203} a^{4} + \frac{632427414544629309227624904306325}{1312515329409926775002047772907203} a^{3} - \frac{26705897238121712423339646774739}{119319575400902434091095252082473} a^{2} - \frac{235203362718297068111915568921630}{1312515329409926775002047772907203} a - \frac{3017036864410177874869989274440}{119319575400902434091095252082473}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4572338.49147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 480 |
| The 19 conjugacy class representatives for $C_4:S_5$ |
| Character table for $C_4:S_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.2.58643.1, 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 347 | Data not computed | ||||||