Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} + 14 x^{17} - 197 x^{16} - 119 x^{15} + 1395 x^{14} - 188 x^{13} - 165 x^{12} + 11695 x^{11} - 18629 x^{10} - 22238 x^{9} - 31665 x^{8} - 141925 x^{7} + 243060 x^{6} + 206790 x^{5} - 463938 x^{4} + 1292806 x^{3} + 1358059 x^{2} - 1792952 x - 1237531 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-785748055861331850537130300409483=-\,13^{10}\cdot 97^{2}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3406110016729151575120228138948508154168705548283847128985894873} a^{19} + \frac{574090342078123476896945863765802399093166619431828662487577935}{3406110016729151575120228138948508154168705548283847128985894873} a^{18} - \frac{13402890047643248545545286444917767344024496104921790061183195}{55837869126707402870823412113909969740470582758751592278457293} a^{17} + \frac{1263416509631067903339576470721953747244982677443177778989413906}{3406110016729151575120228138948508154168705548283847128985894873} a^{16} - \frac{1223739053582628320243184581146610950344627481501283709171370171}{3406110016729151575120228138948508154168705548283847128985894873} a^{15} + \frac{1478457220856001987899942295001098494707258076211699243865754544}{3406110016729151575120228138948508154168705548283847128985894873} a^{14} - \frac{929274598107629712105631278114237367274620960971645233285339112}{3406110016729151575120228138948508154168705548283847128985894873} a^{13} + \frac{1225938782533786052708357472982981115259559004447953755595114225}{3406110016729151575120228138948508154168705548283847128985894873} a^{12} + \frac{235208201035698198257347814649639364774596926389398585770131357}{3406110016729151575120228138948508154168705548283847128985894873} a^{11} + \frac{351310357341282401060892017735947424061272727196398786068508051}{3406110016729151575120228138948508154168705548283847128985894873} a^{10} - \frac{1215348249645174662319532421938989277974085288550142900409963792}{3406110016729151575120228138948508154168705548283847128985894873} a^{9} + \frac{357572243515374056355707253458109030703602131693281356868971497}{3406110016729151575120228138948508154168705548283847128985894873} a^{8} + \frac{1601051128923824432316619071878219672702809399906522846738868010}{3406110016729151575120228138948508154168705548283847128985894873} a^{7} - \frac{95468824283583659586018076478875115992998356244750448650085701}{3406110016729151575120228138948508154168705548283847128985894873} a^{6} - \frac{1204943194357984930917867790350907190817436635170199481028522076}{3406110016729151575120228138948508154168705548283847128985894873} a^{5} - \frac{291452581242951546362882764147590395887761420226704420492235201}{3406110016729151575120228138948508154168705548283847128985894873} a^{4} + \frac{598939879116086123233887755955129964359611014609189136457738982}{3406110016729151575120228138948508154168705548283847128985894873} a^{3} - \frac{690977358010688362388107222689227593063111145302649294102485895}{3406110016729151575120228138948508154168705548283847128985894873} a^{2} - \frac{1334944480204429497150243310685813876746123658184122244208000198}{3406110016729151575120228138948508154168705548283847128985894873} a + \frac{1208001695695981529213791606333237391779744164673614721012752591}{3406110016729151575120228138948508154168705548283847128985894873}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 402282811.058 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||