Normalized defining polynomial
\( x^{20} - 6 x^{19} + 5 x^{18} + 19 x^{17} - 49 x^{16} - 71 x^{15} - 546 x^{14} + 6146 x^{13} - 12271 x^{12} + 12828 x^{11} + 42877 x^{10} + 30308 x^{9} - 29854 x^{8} - 41335 x^{7} + 894721 x^{6} + 1040532 x^{5} + 303069 x^{4} - 864833 x^{3} - 1855645 x^{2} - 125280 x - 47837 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-785748055861331850537130300409483=-\,13^{10}\cdot 97^{2}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{115420013686920817772442338952432957445138329568360925918888165534281} a^{19} + \frac{53088828997116613415826778614648593691652096048367374134015436502379}{115420013686920817772442338952432957445138329568360925918888165534281} a^{18} + \frac{9864656081974593561707406020857594496569584103442998298803267398176}{115420013686920817772442338952432957445138329568360925918888165534281} a^{17} + \frac{6111498910672505687024186550944588957228014624179675853320720001059}{115420013686920817772442338952432957445138329568360925918888165534281} a^{16} - \frac{2045014827066123801140894927222196142499310974956179640673689308304}{115420013686920817772442338952432957445138329568360925918888165534281} a^{15} - \frac{8992579704317153879293053432711230613046052409414328297499947663694}{115420013686920817772442338952432957445138329568360925918888165534281} a^{14} - \frac{39393436064526991316075758750408172197080630703755882663254912480268}{115420013686920817772442338952432957445138329568360925918888165534281} a^{13} - \frac{24748046135699114299090828013015207284298622052549627835061566350769}{115420013686920817772442338952432957445138329568360925918888165534281} a^{12} - \frac{6921981332803088202290638162132676282865605219734304235974690980265}{115420013686920817772442338952432957445138329568360925918888165534281} a^{11} - \frac{19210035043188742930700199881588105219153544114989163198760702453482}{115420013686920817772442338952432957445138329568360925918888165534281} a^{10} - \frac{50748548708892687804715066238909929070845628554493552291596310099009}{115420013686920817772442338952432957445138329568360925918888165534281} a^{9} - \frac{1813665496748397242264795986244192621970058286219119353460428897641}{115420013686920817772442338952432957445138329568360925918888165534281} a^{8} - \frac{38734727034453061440518358404880744621078326159888491144487619041026}{115420013686920817772442338952432957445138329568360925918888165534281} a^{7} + \frac{56159821638662791711018283229014175226116666699262964955159642106280}{115420013686920817772442338952432957445138329568360925918888165534281} a^{6} - \frac{22280826033858135579906974442303499370314155588467282658074215769362}{115420013686920817772442338952432957445138329568360925918888165534281} a^{5} + \frac{43709755360747257822051423449871867588872365579870062226019426329337}{115420013686920817772442338952432957445138329568360925918888165534281} a^{4} - \frac{2244227049104346577189230032819129964612170472335925899812867289687}{115420013686920817772442338952432957445138329568360925918888165534281} a^{3} - \frac{12779770174980450775353851948824615957859321131885398629100493201275}{115420013686920817772442338952432957445138329568360925918888165534281} a^{2} + \frac{54393834980457432252886399174182892230734782230959866531534493077088}{115420013686920817772442338952432957445138329568360925918888165534281} a - \frac{55218726830381553204055715352267564497977007246105659524178043552321}{115420013686920817772442338952432957445138329568360925918888165534281}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 377351765.349 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||