Properties

Label 20.6.78574805586...9483.4
Degree $20$
Signature $[6, 7]$
Discriminant $-\,13^{10}\cdot 97^{2}\cdot 347^{7}$
Root discriminant $44.13$
Ramified primes $13, 97, 347$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T796

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-999623, 3058945, -143581, -256048, -1223688, 601986, -94946, -57441, -75794, 81703, -36867, -4754, 12565, -6171, 1037, 246, -266, 99, -9, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 - 9*x^18 + 99*x^17 - 266*x^16 + 246*x^15 + 1037*x^14 - 6171*x^13 + 12565*x^12 - 4754*x^11 - 36867*x^10 + 81703*x^9 - 75794*x^8 - 57441*x^7 - 94946*x^6 + 601986*x^5 - 1223688*x^4 - 256048*x^3 - 143581*x^2 + 3058945*x - 999623)
 
gp: K = bnfinit(x^20 - 5*x^19 - 9*x^18 + 99*x^17 - 266*x^16 + 246*x^15 + 1037*x^14 - 6171*x^13 + 12565*x^12 - 4754*x^11 - 36867*x^10 + 81703*x^9 - 75794*x^8 - 57441*x^7 - 94946*x^6 + 601986*x^5 - 1223688*x^4 - 256048*x^3 - 143581*x^2 + 3058945*x - 999623, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} - 9 x^{18} + 99 x^{17} - 266 x^{16} + 246 x^{15} + 1037 x^{14} - 6171 x^{13} + 12565 x^{12} - 4754 x^{11} - 36867 x^{10} + 81703 x^{9} - 75794 x^{8} - 57441 x^{7} - 94946 x^{6} + 601986 x^{5} - 1223688 x^{4} - 256048 x^{3} - 143581 x^{2} + 3058945 x - 999623 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-785748055861331850537130300409483=-\,13^{10}\cdot 97^{2}\cdot 347^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.13$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 97, 347$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{22809643086500207576107213276044543224865464587135478768893679616287} a^{19} - \frac{5191627668366679136722705296833752829638266274372935729435079031033}{22809643086500207576107213276044543224865464587135478768893679616287} a^{18} - \frac{3473452352815440833742188824424353039419634511433663232982888605670}{22809643086500207576107213276044543224865464587135478768893679616287} a^{17} - \frac{3627242931353231653582832704871902216031231269223258117195917117878}{22809643086500207576107213276044543224865464587135478768893679616287} a^{16} - \frac{1310451329809472119952759921825269106631324514225934460686161336679}{22809643086500207576107213276044543224865464587135478768893679616287} a^{15} - \frac{5337885733474579738059746698789618915425325705807299065243113169565}{22809643086500207576107213276044543224865464587135478768893679616287} a^{14} + \frac{7699731341779345243177291386779689131965019673852268606909338840016}{22809643086500207576107213276044543224865464587135478768893679616287} a^{13} + \frac{2413147752958247615071128432804490156951164655307577468710197826863}{22809643086500207576107213276044543224865464587135478768893679616287} a^{12} + \frac{10698287644112234530680012888486996566820075024634642921019411362537}{22809643086500207576107213276044543224865464587135478768893679616287} a^{11} + \frac{1465686361442451038286967826961736553722179298381617396503368283911}{22809643086500207576107213276044543224865464587135478768893679616287} a^{10} - \frac{8973659173724357020856106925358267855256888537008721874544848282686}{22809643086500207576107213276044543224865464587135478768893679616287} a^{9} + \frac{7944173158733133506712033147453728505435758266577989705578105926104}{22809643086500207576107213276044543224865464587135478768893679616287} a^{8} - \frac{6824738577936475327184186239005346864113395677426526437853417948658}{22809643086500207576107213276044543224865464587135478768893679616287} a^{7} + \frac{8806094936197182625060555050129593482799048973753379995183403047951}{22809643086500207576107213276044543224865464587135478768893679616287} a^{6} + \frac{7997683594146757774336556696341466390872896897302118778743871132743}{22809643086500207576107213276044543224865464587135478768893679616287} a^{5} + \frac{2176418270082783837990126145477512953074280924870640872600864740682}{22809643086500207576107213276044543224865464587135478768893679616287} a^{4} - \frac{10927649505568283598017701441526624834666117612119128570800036414935}{22809643086500207576107213276044543224865464587135478768893679616287} a^{3} - \frac{106071868823086190801686533794597174653950162580954079982930013214}{1341743710970600445653365486826149601462674387478557574640804683311} a^{2} + \frac{7172297588600479588264453272619218654095194705481035330153522924626}{22809643086500207576107213276044543224865464587135478768893679616287} a - \frac{6804792868972226541148247185366900726693257756562823097550985055983}{22809643086500207576107213276044543224865464587135478768893679616287}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 573716183.695 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T796:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 108 conjugacy class representatives for t20n796 are not computed
Character table for t20n796 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ $20$ $20$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$97$97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
347Data not computed