Normalized defining polynomial
\( x^{20} - 9 x^{19} + 8 x^{18} + 218 x^{17} - 1287 x^{16} + 2647 x^{15} + 5893 x^{14} - 47747 x^{13} + 80856 x^{12} + 127471 x^{11} - 645738 x^{10} + 573446 x^{9} + 1056435 x^{8} - 2570439 x^{7} + 1152018 x^{6} + 1100891 x^{5} + 720336 x^{4} - 3458400 x^{3} - 176876 x^{2} + 5057872 x - 3073379 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-785748055861331850537130300409483=-\,13^{10}\cdot 97^{2}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{292251780310492828878042174892612275688273985883697409231589503} a^{19} + \frac{100306521317593036924332447036288409439018221118384862082716608}{292251780310492828878042174892612275688273985883697409231589503} a^{18} - \frac{3907155298791224982848609513593644050667218938661411252735575}{292251780310492828878042174892612275688273985883697409231589503} a^{17} - \frac{2068679637033836456320439264319792420477935196141317348781754}{292251780310492828878042174892612275688273985883697409231589503} a^{16} - \frac{137641036071095960728086259300793238337555590779263887804728717}{292251780310492828878042174892612275688273985883697409231589503} a^{15} - \frac{144554065184724939193215230688651629575347551841992979791993186}{292251780310492828878042174892612275688273985883697409231589503} a^{14} - \frac{121416796807611044506243629990038890127770728451153713462222620}{292251780310492828878042174892612275688273985883697409231589503} a^{13} + \frac{80477526768315745784807512648195450202480311889084536652639689}{292251780310492828878042174892612275688273985883697409231589503} a^{12} + \frac{83476294352973418974033276811491763085354591933146318895336806}{292251780310492828878042174892612275688273985883697409231589503} a^{11} - \frac{113311552107901958448087594673254481820959422503729355786289162}{292251780310492828878042174892612275688273985883697409231589503} a^{10} - \frac{94440283123892836673389407441901174188211854582205271436337017}{292251780310492828878042174892612275688273985883697409231589503} a^{9} + \frac{26712749712863779718043416923794654019777077912371534206665555}{292251780310492828878042174892612275688273985883697409231589503} a^{8} + \frac{144769235758640664656429991759953297228673543543864851598188174}{292251780310492828878042174892612275688273985883697409231589503} a^{7} + \frac{105719393681016860101929988811503349637254041646439212674062070}{292251780310492828878042174892612275688273985883697409231589503} a^{6} + \frac{119428130467207780894630197336984079721213640223726185023028128}{292251780310492828878042174892612275688273985883697409231589503} a^{5} + \frac{20279952856684823229165412445968068315154044704729153125947430}{292251780310492828878042174892612275688273985883697409231589503} a^{4} - \frac{43538953486672504632822700425478126208418675345459080718233209}{292251780310492828878042174892612275688273985883697409231589503} a^{3} - \frac{116971139165146875349501934232266478974409192103298726618355}{3699389624183453530101799682184965515041442859287308977615057} a^{2} - \frac{89705507843659068692481350337723154441248855830266397212724057}{292251780310492828878042174892612275688273985883697409231589503} a - \frac{118341297944381807940552040711853345168783629988508337221170159}{292251780310492828878042174892612275688273985883697409231589503}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 549169238.072 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||