Normalized defining polynomial
\( x^{20} - 6 x^{19} + 36 x^{18} - 113 x^{17} + 242 x^{16} + 173 x^{15} - 3651 x^{14} + 12031 x^{13} - 20751 x^{12} - 15033 x^{11} + 122424 x^{10} - 178945 x^{9} - 158699 x^{8} + 1093654 x^{7} - 1521385 x^{6} - 32234 x^{5} + 1545640 x^{4} - 2061817 x^{3} + 4345303 x^{2} - 3835220 x + 729661 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-785748055861331850537130300409483=-\,13^{10}\cdot 97^{2}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{19} - \frac{590483715839564737747360216773086251398730688474741479915196944827698}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{18} + \frac{194411277420290921902084462288812347250007764667251911417287145398095}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{17} - \frac{2483891482922521355847924344605103843381829133598684125653271759545172}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{16} - \frac{1952235830152991470155924293203270835565292519514128918429141808970327}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{15} + \frac{1325717493851707127997213376674724049731448253851733129239397344480474}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{14} - \frac{22044254367236285842001765357122674232209666820772883657003388048526}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{13} + \frac{3035551486305778652045017820576601502462328604721535261220397331198344}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{12} + \frac{146627368922892939549614089470943532120204870762892612910920786810673}{556303067582086813275833490379490574356351242776624985812901544254237} a^{11} - \frac{2561698167731771035194637747413995395312949919717618325338587440435793}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{10} + \frac{1675427823402896944214571522921650448249317169051254300768069018251810}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{9} + \frac{2878240383204384925232596068961707514097459688198369957768920423280865}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{8} - \frac{786035637682712717924105453634800245709903283577627890741281572253946}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{7} - \frac{2781636756028320904888506361045755932410107051550274845757258642604508}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{6} + \frac{2960246792322268875171195390529402186831732608508468566993927592368537}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{5} - \frac{1266117982865865012918672303763511267653248373437770560123827332225699}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{4} + \frac{264733971542990471711807966224280213835325320527612257290879638964802}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{3} + \frac{2512574870403338856197598972987896048059515509282086286403594595709597}{6119333743402954946034168394174396317919863670542874843941916986796607} a^{2} + \frac{2579391812442795254415473862515982081385737536639212240289035550662402}{6119333743402954946034168394174396317919863670542874843941916986796607} a - \frac{2542716338275953574543096823174909689188739332259768446148918476346498}{6119333743402954946034168394174396317919863670542874843941916986796607}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 390933084.808 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||