Normalized defining polynomial
\( x^{20} - x^{19} - 7 x^{18} + 15 x^{17} + 35 x^{16} - 88 x^{15} - 48 x^{14} + 257 x^{13} - 62 x^{12} - 671 x^{11} + 968 x^{10} - 291 x^{9} - 439 x^{8} + 503 x^{7} - 300 x^{6} + 20 x^{5} + 39 x^{4} - 77 x^{3} + 66 x^{2} + 14 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-766017076090168481174155747=-\,11^{16}\cdot 307\cdot 7369^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 307, 7369$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{89} a^{18} + \frac{16}{89} a^{17} + \frac{38}{89} a^{16} - \frac{34}{89} a^{15} - \frac{2}{89} a^{14} + \frac{31}{89} a^{13} + \frac{43}{89} a^{12} + \frac{3}{89} a^{11} + \frac{18}{89} a^{10} + \frac{22}{89} a^{9} + \frac{15}{89} a^{8} + \frac{43}{89} a^{7} + \frac{2}{89} a^{6} + \frac{32}{89} a^{5} - \frac{32}{89} a^{4} + \frac{44}{89} a^{3} + \frac{41}{89} a^{2} - \frac{23}{89} a - \frac{20}{89}$, $\frac{1}{162263641843910912390064409} a^{19} - \frac{807912781213877368753320}{162263641843910912390064409} a^{18} - \frac{37918927006951240772097349}{162263641843910912390064409} a^{17} - \frac{27668294685061429555606890}{162263641843910912390064409} a^{16} - \frac{52209794420841331228081173}{162263641843910912390064409} a^{15} + \frac{69530327918013691333236277}{162263641843910912390064409} a^{14} + \frac{19244477461420338651751619}{162263641843910912390064409} a^{13} + \frac{10467097109074558125838960}{162263641843910912390064409} a^{12} + \frac{66853150244422317502696032}{162263641843910912390064409} a^{11} + \frac{43125823490997644297191293}{162263641843910912390064409} a^{10} - \frac{79484188852267057744553695}{162263641843910912390064409} a^{9} - \frac{74195910707054149059918329}{162263641843910912390064409} a^{8} + \frac{45592954063903157445740238}{162263641843910912390064409} a^{7} + \frac{5260269967161917151653550}{162263641843910912390064409} a^{6} - \frac{30378441624026542809206848}{162263641843910912390064409} a^{5} - \frac{22661103943653458961927456}{162263641843910912390064409} a^{4} - \frac{13776919127830904630108140}{162263641843910912390064409} a^{3} - \frac{17680643449550668007436227}{162263641843910912390064409} a^{2} - \frac{9118178908587134786196706}{162263641843910912390064409} a - \frac{7517548171316199577564687}{162263641843910912390064409}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 340648.791996 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 649 conjugacy class representatives for t20n846 are not computed |
| Character table for t20n846 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1579610594089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 307 | Data not computed | ||||||
| 7369 | Data not computed | ||||||