Normalized defining polynomial
\( x^{20} - 2 x^{19} - 5 x^{18} + 8 x^{17} + 8 x^{16} - 8 x^{14} + 6 x^{13} - 39 x^{12} - 40 x^{11} - 75 x^{10} + 86 x^{9} + 147 x^{8} + 52 x^{7} + 346 x^{6} + 180 x^{5} - 89 x^{4} + 14 x^{3} + 26 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7372775235505820194045952=-\,2^{20}\cdot 23^{3}\cdot 4903^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{16} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{4825} a^{18} - \frac{31}{965} a^{17} - \frac{2136}{4825} a^{16} + \frac{96}{4825} a^{15} - \frac{799}{4825} a^{14} + \frac{456}{4825} a^{13} - \frac{2272}{4825} a^{12} + \frac{1921}{4825} a^{11} + \frac{447}{965} a^{10} - \frac{336}{4825} a^{9} + \frac{2173}{4825} a^{8} - \frac{202}{4825} a^{7} + \frac{349}{965} a^{6} - \frac{1316}{4825} a^{5} + \frac{1874}{4825} a^{4} + \frac{44}{4825} a^{3} + \frac{31}{193} a^{2} - \frac{257}{965} a + \frac{1556}{4825}$, $\frac{1}{46190969089518408875} a^{19} - \frac{1550037515713226}{46190969089518408875} a^{18} + \frac{1954111999958249244}{46190969089518408875} a^{17} + \frac{5004138854652196352}{46190969089518408875} a^{16} + \frac{898266192010281357}{9238193817903681775} a^{15} - \frac{2864912719334655218}{9238193817903681775} a^{14} + \frac{12794735853725382652}{46190969089518408875} a^{13} + \frac{5040923137465302333}{46190969089518408875} a^{12} + \frac{21072870667603466744}{46190969089518408875} a^{11} - \frac{19883559651434361571}{46190969089518408875} a^{10} - \frac{5941248525585771921}{46190969089518408875} a^{9} - \frac{51004280318196497}{9238193817903681775} a^{8} - \frac{1116344154208389713}{46190969089518408875} a^{7} - \frac{3012437046970486861}{46190969089518408875} a^{6} + \frac{3607792431273184067}{9238193817903681775} a^{5} - \frac{3252019988495509822}{9238193817903681775} a^{4} - \frac{1661315759748485324}{46190969089518408875} a^{3} + \frac{850163371715481668}{9238193817903681775} a^{2} - \frac{8800372830551541384}{46190969089518408875} a + \frac{5137501768730253524}{46190969089518408875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44839.5762854 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3932160 |
| The 506 conjugacy class representatives for t20n1015 are not computed |
| Character table for t20n1015 is not computed |
Intermediate fields
| 5.3.4903.1, 10.6.566176160768.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 23 | Data not computed | ||||||
| 4903 | Data not computed | ||||||