Normalized defining polynomial
\( x^{20} - 8 x^{18} - 12 x^{17} + 21 x^{16} + 113 x^{15} + 39 x^{14} - 616 x^{13} - 580 x^{12} - 49 x^{11} + 4488 x^{10} + 8822 x^{9} - 13873 x^{8} - 27185 x^{7} + 64308 x^{6} + 27027 x^{5} - 168694 x^{4} - 22583 x^{3} + 125829 x^{2} - 48793 x + 4541 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-706496593452575742775878906250000=-\,2^{4}\cdot 5^{16}\cdot 11^{4}\cdot 71^{4}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6} a^{18} - \frac{1}{3} a^{17} - \frac{1}{2} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{2} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{52802194534217323430194986715075496811232954425798} a^{19} - \frac{2115914470091796584664219367333293532755295873877}{52802194534217323430194986715075496811232954425798} a^{18} - \frac{4860032978933013826379015662151369698946261790979}{17600731511405774476731662238358498937077651475266} a^{17} - \frac{13848693890773810498852822280923860385256789954543}{52802194534217323430194986715075496811232954425798} a^{16} + \frac{13134088541395758911005786427231185912564717460168}{26401097267108661715097493357537748405616477212899} a^{15} - \frac{2136371422288118210021068048975003281953348911289}{52802194534217323430194986715075496811232954425798} a^{14} + \frac{2385054928433192105669816342459087976143840716210}{26401097267108661715097493357537748405616477212899} a^{13} + \frac{9277402381415213439949599990908661322030912817284}{26401097267108661715097493357537748405616477212899} a^{12} + \frac{2490640807388655854551049714012508545571668495288}{8800365755702887238365831119179249468538825737633} a^{11} - \frac{17022908207770562865569138747650952565910879803083}{52802194534217323430194986715075496811232954425798} a^{10} - \frac{14187400787699347837569933299967420498574069771139}{52802194534217323430194986715075496811232954425798} a^{9} - \frac{11769465408300099838998283858652271765434078877635}{52802194534217323430194986715075496811232954425798} a^{8} - \frac{6897977399027590213908761349332681076783974365498}{26401097267108661715097493357537748405616477212899} a^{7} + \frac{4961512280741630223100533723445795941068889270679}{17600731511405774476731662238358498937077651475266} a^{6} + \frac{3444231799591931443595840911710777945043725507973}{52802194534217323430194986715075496811232954425798} a^{5} + \frac{6065467376338602187459009969468632404014248832763}{26401097267108661715097493357537748405616477212899} a^{4} + \frac{4347206111324197220620256699199390684895506207509}{26401097267108661715097493357537748405616477212899} a^{3} - \frac{300995553094464945322642059645369215397735006005}{17600731511405774476731662238358498937077651475266} a^{2} + \frac{11808888726735661115434051269755137415546350073873}{26401097267108661715097493357537748405616477212899} a + \frac{8668917185273721396398009449891342280480719456825}{17600731511405774476731662238358498937077651475266}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 759961318.852 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | $18{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.10.16.14 | $x^{10} + 20 x^{9} + 10 x^{8} + 10 x^{7} + 15 x^{6} + 15 x^{5} + 5 x^{4} + 15 x^{3} + 5 x^{2} + 20 x + 7$ | $5$ | $2$ | $16$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.8.4.1 | $x^{8} + 110902 x^{4} - 357911 x^{2} + 3074813401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 167.8.4.1 | $x^{8} + 3346680 x^{4} - 4657463 x^{2} + 2800066755600$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |