Normalized defining polynomial
\( x^{20} - 5 x^{18} + 25 x^{16} - 64 x^{15} - 110 x^{14} + 320 x^{13} + 325 x^{12} - 600 x^{11} - 383 x^{10} + 920 x^{9} - 535 x^{8} - 2080 x^{7} + 1920 x^{6} + 2744 x^{5} - 2415 x^{4} - 1520 x^{3} + 1435 x^{2} + 280 x - 229 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-671088640000000000000000000000=-\,2^{48}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{34} a^{18} + \frac{7}{34} a^{17} + \frac{3}{34} a^{16} + \frac{3}{17} a^{15} + \frac{6}{17} a^{14} + \frac{6}{17} a^{13} - \frac{4}{17} a^{12} + \frac{5}{17} a^{11} + \frac{9}{34} a^{10} + \frac{5}{34} a^{9} - \frac{3}{34} a^{8} + \frac{7}{17} a^{7} - \frac{4}{17} a^{6} + \frac{5}{17} a^{5} + \frac{3}{17} a^{4} - \frac{2}{17} a^{3} - \frac{3}{34} a^{2} - \frac{1}{2} a + \frac{11}{34}$, $\frac{1}{1760551616038202731568038457254} a^{19} + \frac{7062734511723562117611389425}{880275808019101365784019228627} a^{18} - \frac{53238966388458523084408885363}{1760551616038202731568038457254} a^{17} - \frac{11314036672869630034767588531}{51780929883476550928471719331} a^{16} + \frac{18026089042000587084762832582}{51780929883476550928471719331} a^{15} - \frac{232037977330421827979726059679}{880275808019101365784019228627} a^{14} + \frac{214185228494939241665496956493}{880275808019101365784019228627} a^{13} - \frac{340779180979529801977383229189}{880275808019101365784019228627} a^{12} + \frac{436968018896106588254616737209}{1760551616038202731568038457254} a^{11} + \frac{364481298942164238024503048686}{880275808019101365784019228627} a^{10} + \frac{466797131813486159244079756319}{1760551616038202731568038457254} a^{9} - \frac{190837422080923112490262863412}{880275808019101365784019228627} a^{8} + \frac{227765307806730492911581111539}{880275808019101365784019228627} a^{7} + \frac{185120951103382298498682264656}{880275808019101365784019228627} a^{6} - \frac{437906436675957787528787259687}{880275808019101365784019228627} a^{5} + \frac{29741454542602226331001206294}{880275808019101365784019228627} a^{4} - \frac{35709662970729392398392204971}{160050146912563884688003496114} a^{3} - \frac{259299269947154808267257719161}{880275808019101365784019228627} a^{2} - \frac{315577302319633628511867855001}{1760551616038202731568038457254} a + \frac{120280500827042981061960705743}{880275808019101365784019228627}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25992624.9925 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 480 |
| The 19 conjugacy class representatives for $C_4:S_5$ |
| Character table for $C_4:S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.400.1, 5.3.3200000.1, 10.6.51200000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||