Properties

Label 20.6.65126055882...1875.1
Degree $20$
Signature $[6, 7]$
Discriminant $-\,5^{10}\cdot 11^{5}\cdot 13^{4}\cdot 347^{4}$
Root discriminant $21.91$
Ramified primes $5, 11, 13, 347$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T174

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 0, 8, -5, -8, 18, 17, -22, -50, 23, 21, -21, -21, -8, 32, 6, 2, -10, -1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^18 - 10*x^17 + 2*x^16 + 6*x^15 + 32*x^14 - 8*x^13 - 21*x^12 - 21*x^11 + 21*x^10 + 23*x^9 - 50*x^8 - 22*x^7 + 17*x^6 + 18*x^5 - 8*x^4 - 5*x^3 + 8*x^2 - 1)
 
gp: K = bnfinit(x^20 - x^18 - 10*x^17 + 2*x^16 + 6*x^15 + 32*x^14 - 8*x^13 - 21*x^12 - 21*x^11 + 21*x^10 + 23*x^9 - 50*x^8 - 22*x^7 + 17*x^6 + 18*x^5 - 8*x^4 - 5*x^3 + 8*x^2 - 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{18} - 10 x^{17} + 2 x^{16} + 6 x^{15} + 32 x^{14} - 8 x^{13} - 21 x^{12} - 21 x^{11} + 21 x^{10} + 23 x^{9} - 50 x^{8} - 22 x^{7} + 17 x^{6} + 18 x^{5} - 8 x^{4} - 5 x^{3} + 8 x^{2} - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-651260558829045954013671875=-\,5^{10}\cdot 11^{5}\cdot 13^{4}\cdot 347^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 13, 347$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3691146694279} a^{19} - \frac{828428206806}{3691146694279} a^{18} - \frac{1294726960304}{3691146694279} a^{17} - \frac{1836824203021}{3691146694279} a^{16} - \frac{1334381553416}{3691146694279} a^{15} + \frac{919269850371}{3691146694279} a^{14} + \frac{1706808135188}{3691146694279} a^{13} + \frac{730541484034}{3691146694279} a^{12} + \frac{1529236705659}{3691146694279} a^{11} + \frac{1165387207320}{3691146694279} a^{10} + \frac{327073114355}{3691146694279} a^{9} - \frac{417233915830}{3691146694279} a^{8} + \frac{1597809431444}{3691146694279} a^{7} - \frac{1332349499966}{3691146694279} a^{6} + \frac{252339559469}{3691146694279} a^{5} + \frac{271147760567}{3691146694279} a^{4} + \frac{11861207619}{99760721467} a^{3} - \frac{335944700875}{3691146694279} a^{2} - \frac{426188019562}{3691146694279} a + \frac{264027662981}{3691146694279}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 372125.227703 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T174:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 960
The 35 conjugacy class representatives for t20n174
Character table for t20n174 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.275.1, 5.3.4511.1, 10.6.63591003125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R $20$ R R ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.6.0.1$x^{6} + x^{2} - 2 x + 8$$1$$6$$0$$C_6$$[\ ]^{6}$
11.6.3.1$x^{6} - 22 x^{4} + 121 x^{2} - 11979$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
347Data not computed