Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 8 x^{17} - 16 x^{16} + 46 x^{15} - 82 x^{14} + 106 x^{13} - 58 x^{12} - 218 x^{11} + 845 x^{10} - 980 x^{9} - 766 x^{8} + 2974 x^{7} - 1357 x^{6} - 2888 x^{5} + 2825 x^{4} + 970 x^{3} - 1826 x^{2} + 2 x + 433 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-59313783170950766384309600256=-\,2^{20}\cdot 3^{19}\cdot 13^{5}\cdot 107^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{117} a^{17} - \frac{5}{117} a^{16} + \frac{19}{117} a^{15} + \frac{17}{117} a^{14} - \frac{4}{117} a^{13} + \frac{8}{117} a^{12} + \frac{7}{117} a^{11} - \frac{8}{117} a^{10} - \frac{56}{117} a^{9} + \frac{20}{117} a^{8} + \frac{50}{117} a^{7} + \frac{29}{117} a^{6} - \frac{56}{117} a^{5} - \frac{11}{117} a^{4} + \frac{4}{9} a^{3} - \frac{16}{117} a^{2} + \frac{5}{117} a + \frac{56}{117}$, $\frac{1}{1521} a^{18} + \frac{4}{1521} a^{17} - \frac{11}{117} a^{16} - \frac{202}{1521} a^{15} + \frac{149}{1521} a^{14} + \frac{245}{1521} a^{13} + \frac{1}{1521} a^{12} + \frac{250}{1521} a^{11} + \frac{67}{1521} a^{10} - \frac{640}{1521} a^{9} + \frac{737}{1521} a^{8} - \frac{730}{1521} a^{7} + \frac{361}{1521} a^{6} - \frac{710}{1521} a^{5} - \frac{476}{1521} a^{4} - \frac{406}{1521} a^{3} - \frac{412}{1521} a^{2} + \frac{452}{1521} a - \frac{248}{507}$, $\frac{1}{54965488715802873} a^{19} + \frac{681240004103}{4228114516600221} a^{18} - \frac{135568708963834}{54965488715802873} a^{17} - \frac{1430406439942361}{18321829571934291} a^{16} + \frac{2411839390743427}{54965488715802873} a^{15} - \frac{18287485483877}{4228114516600221} a^{14} - \frac{627234827474330}{18321829571934291} a^{13} + \frac{8413928510631539}{54965488715802873} a^{12} + \frac{8034858661896797}{54965488715802873} a^{11} + \frac{9201516715771}{964306819575489} a^{10} + \frac{6209314495923664}{54965488715802873} a^{9} + \frac{4385908672128244}{54965488715802873} a^{8} - \frac{3017118352666906}{18321829571934291} a^{7} - \frac{10825148621029375}{54965488715802873} a^{6} - \frac{19271105273905201}{54965488715802873} a^{5} - \frac{1427954295276716}{18321829571934291} a^{4} + \frac{13578827968407289}{54965488715802873} a^{3} + \frac{8708077647029092}{54965488715802873} a^{2} + \frac{13774421111873912}{54965488715802873} a + \frac{289414711550930}{18321829571934291}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7112232.34608 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.6.38998285028352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | $20$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.12.13.4 | $x^{12} - 3 x^{10} + 3 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{2} - 3$ | $12$ | $1$ | $13$ | 12T36 | $[5/4, 5/4]_{4}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.5.1 | $x^{6} - 52$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 107 | Data not computed | ||||||