Normalized defining polynomial
\( x^{20} - 2 x^{19} - 2 x^{18} - 10 x^{17} + 23 x^{16} - 28 x^{15} + 23 x^{14} + 32 x^{13} - 22 x^{12} + 38 x^{11} - 25 x^{10} + 38 x^{9} - 22 x^{8} + 32 x^{7} + 23 x^{6} - 28 x^{5} + 23 x^{4} - 10 x^{3} - 2 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-59313783170950766384309600256=-\,2^{20}\cdot 3^{19}\cdot 13^{5}\cdot 107^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{45} a^{16} + \frac{1}{9} a^{15} - \frac{1}{15} a^{14} + \frac{2}{15} a^{13} - \frac{2}{5} a^{12} - \frac{7}{15} a^{11} - \frac{16}{45} a^{10} + \frac{4}{45} a^{9} + \frac{1}{15} a^{8} + \frac{19}{45} a^{7} - \frac{1}{45} a^{6} - \frac{7}{15} a^{5} - \frac{2}{5} a^{4} + \frac{2}{15} a^{3} - \frac{1}{15} a^{2} - \frac{2}{9} a - \frac{14}{45}$, $\frac{1}{135} a^{17} + \frac{1}{135} a^{16} + \frac{22}{135} a^{15} + \frac{2}{15} a^{14} - \frac{14}{45} a^{13} - \frac{13}{45} a^{12} - \frac{67}{135} a^{11} - \frac{22}{135} a^{10} - \frac{58}{135} a^{9} + \frac{7}{135} a^{8} + \frac{58}{135} a^{7} - \frac{62}{135} a^{6} - \frac{8}{45} a^{5} + \frac{11}{45} a^{4} + \frac{2}{15} a^{3} + \frac{2}{135} a^{2} + \frac{26}{135} a - \frac{34}{135}$, $\frac{1}{2868345} a^{18} - \frac{584}{573669} a^{17} - \frac{20737}{2868345} a^{16} + \frac{65761}{2868345} a^{15} - \frac{31472}{956115} a^{14} + \frac{19697}{63741} a^{13} + \frac{737336}{2868345} a^{12} - \frac{1237772}{2868345} a^{11} - \frac{547463}{2868345} a^{10} - \frac{49416}{106235} a^{9} - \frac{334993}{2868345} a^{8} + \frac{568223}{2868345} a^{7} + \frac{206161}{2868345} a^{6} - \frac{1550}{63741} a^{5} - \frac{456412}{956115} a^{4} + \frac{596936}{2868345} a^{3} + \frac{85498}{2868345} a^{2} - \frac{43078}{573669} a + \frac{212471}{2868345}$, $\frac{1}{8605035} a^{19} - \frac{1}{8605035} a^{18} + \frac{2036}{956115} a^{17} - \frac{81568}{8605035} a^{16} + \frac{132038}{1721007} a^{15} - \frac{15364}{191223} a^{14} + \frac{3721667}{8605035} a^{13} - \frac{1997486}{8605035} a^{12} + \frac{736843}{2868345} a^{11} + \frac{1901426}{8605035} a^{10} - \frac{340607}{8605035} a^{9} + \frac{1324619}{2868345} a^{8} - \frac{3622417}{8605035} a^{7} - \frac{2975411}{8605035} a^{6} - \frac{17833}{106235} a^{5} + \frac{3162356}{8605035} a^{4} + \frac{1838713}{8605035} a^{3} - \frac{82661}{191223} a^{2} - \frac{492113}{8605035} a + \frac{1320233}{8605035}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15118132.1444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.6.38998285028352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.12.13.6 | $x^{12} + 3 x^{11} + 3 x^{7} + 3 x^{6} + 3 x^{4} + 3 x^{2} - 3$ | $12$ | $1$ | $13$ | 12T35 | $[5/4, 5/4]_{4}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.5.1 | $x^{6} - 52$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $107$ | $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 107.6.4.1 | $x^{6} + 1498 x^{3} + 1431125$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |