Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 2 x^{17} - 22 x^{16} + 40 x^{15} - 52 x^{14} + 118 x^{13} - 121 x^{12} - 254 x^{11} + 509 x^{10} - 104 x^{9} - 838 x^{8} + 1036 x^{7} + 374 x^{6} - 1490 x^{5} + 230 x^{4} + 850 x^{3} - 119 x^{2} - 166 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-59313783170950766384309600256=-\,2^{20}\cdot 3^{19}\cdot 13^{5}\cdot 107^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{4}{9} a^{13} - \frac{4}{9} a^{12} + \frac{1}{9} a^{11} - \frac{4}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{4}{9} a^{6} - \frac{2}{9} a^{5} + \frac{2}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{171} a^{18} + \frac{2}{171} a^{17} + \frac{4}{171} a^{16} + \frac{5}{171} a^{15} - \frac{26}{171} a^{14} + \frac{41}{171} a^{13} + \frac{73}{171} a^{12} + \frac{8}{171} a^{11} + \frac{4}{9} a^{10} + \frac{77}{171} a^{9} - \frac{74}{171} a^{8} + \frac{23}{171} a^{7} + \frac{43}{171} a^{6} - \frac{13}{171} a^{5} - \frac{41}{171} a^{4} - \frac{1}{171} a^{3} + \frac{31}{171} a^{2} - \frac{67}{171} a - \frac{8}{19}$, $\frac{1}{3453527882227599378470385} a^{19} - \frac{220920131093874696844}{76745064049502208410453} a^{18} + \frac{3956278881636102891156}{76745064049502208410453} a^{17} - \frac{7946761881159947895476}{60588208460133322429305} a^{16} + \frac{7486280471448708474978}{76745064049502208410453} a^{15} + \frac{8293533702601452990443}{230235192148506625231359} a^{14} - \frac{150228460715428699317079}{1151175960742533126156795} a^{13} - \frac{83093608327402779383861}{230235192148506625231359} a^{12} - \frac{28382379702601157645929}{88551996980194855858215} a^{11} - \frac{234119468260766020283141}{1151175960742533126156795} a^{10} + \frac{50946556776965300721734}{1151175960742533126156795} a^{9} + \frac{35454841562966056730856}{383725320247511042052265} a^{8} + \frac{18858674790874774500889}{60588208460133322429305} a^{7} - \frac{138215878240213069298208}{383725320247511042052265} a^{6} - \frac{226095194345829372180983}{1151175960742533126156795} a^{5} - \frac{279016759863724976909242}{1151175960742533126156795} a^{4} - \frac{436073249976500077328848}{1151175960742533126156795} a^{3} + \frac{363773776984653729358568}{1151175960742533126156795} a^{2} - \frac{361128299540210580706483}{3453527882227599378470385} a + \frac{179937175366176314338943}{383725320247511042052265}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14118831.6409 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.6.38998285028352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ |
| 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.5.6 | $x^{6} + 416$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 107 | Data not computed | ||||||