Properties

Label 20.6.53684506834...8048.1
Degree $20$
Signature $[6, 7]$
Discriminant $-\,2^{16}\cdot 3^{21}\cdot 23^{8}$
Root discriminant $19.34$
Ramified primes $2, 3, 23$
Class number $1$
Class group Trivial
Galois group $C_2\times S_5$ (as 20T65)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -6, 14, 51, 27, -82, -186, -60, 196, 234, 6, -210, -93, 84, 44, -15, -12, 8, 0, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 + 8*x^17 - 12*x^16 - 15*x^15 + 44*x^14 + 84*x^13 - 93*x^12 - 210*x^11 + 6*x^10 + 234*x^9 + 196*x^8 - 60*x^7 - 186*x^6 - 82*x^5 + 27*x^4 + 51*x^3 + 14*x^2 - 6*x + 3)
 
gp: K = bnfinit(x^20 - 3*x^19 + 8*x^17 - 12*x^16 - 15*x^15 + 44*x^14 + 84*x^13 - 93*x^12 - 210*x^11 + 6*x^10 + 234*x^9 + 196*x^8 - 60*x^7 - 186*x^6 - 82*x^5 + 27*x^4 + 51*x^3 + 14*x^2 - 6*x + 3, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} + 8 x^{17} - 12 x^{16} - 15 x^{15} + 44 x^{14} + 84 x^{13} - 93 x^{12} - 210 x^{11} + 6 x^{10} + 234 x^{9} + 196 x^{8} - 60 x^{7} - 186 x^{6} - 82 x^{5} + 27 x^{4} + 51 x^{3} + 14 x^{2} - 6 x + 3 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-53684506834645431421698048=-\,2^{16}\cdot 3^{21}\cdot 23^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3528064828273801} a^{19} - \frac{700214904258907}{3528064828273801} a^{18} + \frac{714162668024199}{3528064828273801} a^{17} - \frac{973487410350998}{3528064828273801} a^{16} + \frac{1010227394941037}{3528064828273801} a^{15} - \frac{1482307596693171}{3528064828273801} a^{14} - \frac{919610650505830}{3528064828273801} a^{13} + \frac{925084412294695}{3528064828273801} a^{12} + \frac{964286487081767}{3528064828273801} a^{11} + \frac{1108558705583632}{3528064828273801} a^{10} - \frac{365915650633691}{3528064828273801} a^{9} - \frac{1374428156061223}{3528064828273801} a^{8} - \frac{947299056290882}{3528064828273801} a^{7} + \frac{567847601158698}{3528064828273801} a^{6} - \frac{783976386074878}{3528064828273801} a^{5} - \frac{158757330516102}{3528064828273801} a^{4} + \frac{1431419524313298}{3528064828273801} a^{3} + \frac{1048218372658995}{3528064828273801} a^{2} + \frac{1759738452707541}{3528064828273801} a + \frac{1760732195741036}{3528064828273801}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 182747.907223 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_5$ (as 20T65):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 240
The 14 conjugacy class representatives for $C_2\times S_5$
Character table for $C_2\times S_5$

Intermediate fields

10.4.1410076263168.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 12 siblings: data not computed
Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 30 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ R ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.6.6.4$x^{6} + 3 x^{4} + 6 x^{3} + 9 x^{2} + 63 x + 9$$3$$2$$6$$D_{6}$$[3/2]_{2}^{2}$
3.12.14.11$x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$$6$$2$$14$$D_6$$[3/2]_{2}^{2}$
$23$23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.8.4.1$x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
23.8.4.1$x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$