Normalized defining polynomial
\( x^{20} - 7 x^{19} + 24 x^{18} - 55 x^{17} - 37 x^{16} + 565 x^{15} - 762 x^{14} + 329 x^{13} + 729 x^{12} - 4417 x^{11} + 4277 x^{10} + 579 x^{9} - 3082 x^{8} + 515 x^{7} - 11796 x^{6} - 20662 x^{5} - 23563 x^{4} - 16399 x^{3} - 6563 x^{2} - 1836 x - 203 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5135597653613049544557754697024447=-\,19^{9}\cdot 293^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} - \frac{8}{19} a^{17} + \frac{8}{19} a^{16} - \frac{4}{19} a^{15} + \frac{3}{19} a^{14} - \frac{7}{19} a^{13} + \frac{9}{19} a^{12} - \frac{6}{19} a^{11} + \frac{6}{19} a^{10} - \frac{4}{19} a^{9} - \frac{5}{19} a^{8} - \frac{4}{19} a^{7} + \frac{6}{19} a^{6} - \frac{3}{19} a^{5} - \frac{5}{19} a^{4} - \frac{8}{19} a^{3} - \frac{8}{19} a^{2} + \frac{8}{19} a + \frac{5}{19}$, $\frac{1}{360976411418775889544241412897210351221294793} a^{19} + \frac{4230408890537205002629708493624324848992800}{360976411418775889544241412897210351221294793} a^{18} - \frac{93207424428509307527635361367990505213717469}{360976411418775889544241412897210351221294793} a^{17} - \frac{43684822513639833368435644910060733845742317}{360976411418775889544241412897210351221294793} a^{16} - \frac{8056802544107495151971770564263057483084850}{360976411418775889544241412897210351221294793} a^{15} - \frac{164654281622045177351437973777257806938897611}{360976411418775889544241412897210351221294793} a^{14} - \frac{56632751033436435565229578511003758558644059}{360976411418775889544241412897210351221294793} a^{13} + \frac{108825865665617851145508381438285604097614136}{360976411418775889544241412897210351221294793} a^{12} - \frac{144966700739866406213954724641111922557974767}{360976411418775889544241412897210351221294793} a^{11} + \frac{103246633368775489773707703674036345846111125}{360976411418775889544241412897210351221294793} a^{10} + \frac{149373127960888630846823331625335361252714186}{360976411418775889544241412897210351221294793} a^{9} + \frac{35055295890053817987438815588059470735821127}{360976411418775889544241412897210351221294793} a^{8} + \frac{138031128180143766708964729909530633283740839}{360976411418775889544241412897210351221294793} a^{7} - \frac{150729843633146771459722548882793214020887389}{360976411418775889544241412897210351221294793} a^{6} + \frac{157495802954519208177225098495096957127318336}{360976411418775889544241412897210351221294793} a^{5} - \frac{103784570547080513197629901538837962056969155}{360976411418775889544241412897210351221294793} a^{4} - \frac{2568328082106365729182229521274921889667445}{18998758495725046818117969099853176380068147} a^{3} + \frac{110862111018297034816975524677228834710775612}{360976411418775889544241412897210351221294793} a^{2} - \frac{108311302267350099275590810021381511323388025}{360976411418775889544241412897210351221294793} a - \frac{144526549962050722232582220660304405426775497}{360976411418775889544241412897210351221294793}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 958496997.21 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 293 | Data not computed | ||||||