Normalized defining polynomial
\( x^{20} + 10 x^{18} + 21 x^{16} - 60 x^{14} - 244 x^{12} - 104 x^{10} + 371 x^{8} + 298 x^{6} - 109 x^{4} - 104 x^{2} - 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5092151360596147886766002500000000=-\,2^{8}\cdot 5^{10}\cdot 1093^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1093$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{6} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{14} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{7}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{15} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{7}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{10016} a^{18} - \frac{1}{32} a^{17} - \frac{7}{10016} a^{16} + \frac{1}{32} a^{15} - \frac{243}{5008} a^{14} - \frac{1}{8} a^{13} - \frac{297}{2504} a^{12} - \frac{1}{8} a^{11} + \frac{303}{1252} a^{10} + \frac{157}{1252} a^{8} - \frac{1}{4} a^{7} - \frac{949}{10016} a^{6} - \frac{11}{32} a^{5} - \frac{3601}{10016} a^{4} - \frac{1}{32} a^{3} - \frac{433}{5008} a^{2} + \frac{3}{8} a + \frac{497}{1252}$, $\frac{1}{20032} a^{19} - \frac{5}{313} a^{17} - \frac{1}{32} a^{16} - \frac{173}{20032} a^{15} - \frac{3}{32} a^{14} + \frac{1}{313} a^{13} - \frac{1}{8} a^{12} + \frac{293}{5008} a^{11} + \frac{1}{8} a^{10} - \frac{469}{2504} a^{9} + \frac{1555}{20032} a^{7} - \frac{1}{2} a^{6} + \frac{743}{5008} a^{5} + \frac{13}{32} a^{4} - \frac{6187}{20032} a^{3} - \frac{13}{32} a^{2} - \frac{2449}{5008} a - \frac{3}{8}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1000532686.41 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.1194649.1, 10.10.4459956978753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1093 | Data not computed | ||||||