Properties

Label 20.6.45382052392...0000.1
Degree $20$
Signature $[6, 7]$
Discriminant $-\,2^{16}\cdot 5^{20}\cdot 29^{4}\cdot 179^{4}$
Root discriminant $48.18$
Ramified primes $2, 5, 29, 179$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1037

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-16, 0, -20, 0, 75, 0, 10, 0, -65, 0, -9, 0, 30, 0, 5, 0, -10, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^16 + 5*x^14 + 30*x^12 - 9*x^10 - 65*x^8 + 10*x^6 + 75*x^4 - 20*x^2 - 16)
 
gp: K = bnfinit(x^20 - 10*x^16 + 5*x^14 + 30*x^12 - 9*x^10 - 65*x^8 + 10*x^6 + 75*x^4 - 20*x^2 - 16, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{16} + 5 x^{14} + 30 x^{12} - 9 x^{10} - 65 x^{8} + 10 x^{6} + 75 x^{4} - 20 x^{2} - 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-4538205239271006250000000000000000=-\,2^{16}\cdot 5^{20}\cdot 29^{4}\cdot 179^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 179$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{95944} a^{18} - \frac{1}{4} a^{17} + \frac{2459}{11993} a^{16} + \frac{22711}{47972} a^{14} - \frac{1}{2} a^{13} + \frac{15117}{95944} a^{12} - \frac{1}{4} a^{11} - \frac{22373}{47972} a^{10} - \frac{1}{2} a^{9} + \frac{42879}{95944} a^{8} + \frac{1}{4} a^{7} - \frac{24025}{95944} a^{6} + \frac{1}{4} a^{5} + \frac{177}{47972} a^{4} - \frac{1}{2} a^{3} - \frac{39949}{95944} a^{2} + \frac{1}{4} a + \frac{139}{23986}$, $\frac{1}{191888} a^{19} - \frac{7075}{47972} a^{17} - \frac{1}{2} a^{16} - \frac{25261}{95944} a^{15} + \frac{15117}{191888} a^{13} - \frac{46359}{95944} a^{11} - \frac{1}{2} a^{10} + \frac{42879}{191888} a^{9} + \frac{23947}{191888} a^{7} - \frac{1}{2} a^{6} + \frac{24163}{95944} a^{5} - \frac{1}{2} a^{4} - \frac{39949}{191888} a^{3} - \frac{5927}{23986} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1182167113.89 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1037:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 384 conjugacy class representatives for t20n1037 are not computed
Character table for t20n1037 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.263149228515625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ R ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.8.0.1}{8} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.8.0.1$x^{8} + x^{2} - 3 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
$179$$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.1.2$x^{2} + 537$$2$$1$$1$$C_2$$[\ ]_{2}$
179.2.1.2$x^{2} + 537$$2$$1$$1$$C_2$$[\ ]_{2}$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.4.0.1$x^{4} - x + 7$$1$$4$$0$$C_4$$[\ ]^{4}$
179.4.2.1$x^{4} + 2327 x^{2} + 1570009$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$