Normalized defining polynomial
\( x^{20} - 8 x^{19} + 27 x^{18} - 44 x^{17} + 24 x^{16} + 42 x^{15} - 156 x^{14} + 410 x^{13} - 770 x^{12} + 672 x^{11} + 174 x^{10} - 686 x^{9} + 559 x^{8} - 2084 x^{7} + 4631 x^{6} - 4458 x^{5} + 2370 x^{4} - 828 x^{3} + 206 x^{2} - 30 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4491847210279624743200523264=-\,2^{10}\cdot 3^{8}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{46} a^{18} + \frac{11}{46} a^{16} - \frac{1}{23} a^{15} - \frac{7}{46} a^{14} - \frac{5}{46} a^{13} + \frac{4}{23} a^{12} - \frac{21}{46} a^{11} - \frac{4}{23} a^{10} + \frac{1}{46} a^{9} - \frac{6}{23} a^{8} - \frac{8}{23} a^{7} - \frac{21}{46} a^{6} + \frac{5}{46} a^{5} + \frac{8}{23} a^{4} - \frac{17}{46} a^{3} - \frac{1}{2} a^{2} - \frac{2}{23} a + \frac{13}{46}$, $\frac{1}{13102960797334348863858038} a^{19} - \frac{99545811081283676485559}{13102960797334348863858038} a^{18} + \frac{1650999815228010548803981}{13102960797334348863858038} a^{17} - \frac{58640717765925979952361}{569693947710189081037306} a^{16} - \frac{857965161951110765596351}{6551480398667174431929019} a^{15} + \frac{72396685459471316615303}{284846973855094540518653} a^{14} - \frac{3515128805657566862581199}{13102960797334348863858038} a^{13} - \frac{1453201245151607566473885}{6551480398667174431929019} a^{12} - \frac{1675542699857572652190593}{6551480398667174431929019} a^{11} + \frac{3526628519178532464064595}{13102960797334348863858038} a^{10} - \frac{4751357663910861422691513}{13102960797334348863858038} a^{9} - \frac{2601804769229893779203935}{6551480398667174431929019} a^{8} + \frac{3232554622545315117694985}{13102960797334348863858038} a^{7} + \frac{2721263415844072693110657}{13102960797334348863858038} a^{6} - \frac{4000898443864058147174109}{13102960797334348863858038} a^{5} + \frac{314904659876302324146577}{6551480398667174431929019} a^{4} + \frac{765688698614951349779968}{6551480398667174431929019} a^{3} + \frac{5615626117545332407643301}{13102960797334348863858038} a^{2} + \frac{3141175524159009145029354}{6551480398667174431929019} a + \frac{3119581828240177289317706}{6551480398667174431929019}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1153258.57936 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n849 are not computed |
| Character table for t20n849 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.232712654409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||