Normalized defining polynomial
\( x^{20} - 2 x^{19} + 6 x^{18} - 17 x^{17} + 31 x^{16} - 32 x^{15} + 78 x^{14} - 127 x^{13} + 100 x^{12} - 226 x^{11} + 342 x^{10} - 220 x^{9} + 223 x^{8} - 462 x^{7} + 457 x^{6} - 74 x^{5} - 142 x^{4} + 78 x^{3} + 10 x^{2} - 10 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38011043274806994636408671=-\,13^{7}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{1}{13} a^{16} - \frac{3}{13} a^{15} + \frac{4}{13} a^{14} + \frac{4}{13} a^{13} - \frac{4}{13} a^{12} + \frac{2}{13} a^{11} - \frac{3}{13} a^{10} + \frac{4}{13} a^{9} + \frac{3}{13} a^{8} + \frac{5}{13} a^{7} - \frac{6}{13} a^{6} + \frac{4}{13} a^{5} - \frac{5}{13} a^{4} - \frac{1}{13} a^{3} + \frac{3}{13} a^{2} - \frac{3}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{18} - \frac{4}{13} a^{16} + \frac{1}{13} a^{15} - \frac{5}{13} a^{14} - \frac{2}{13} a^{12} - \frac{1}{13} a^{11} + \frac{1}{13} a^{10} - \frac{6}{13} a^{9} - \frac{5}{13} a^{8} - \frac{1}{13} a^{7} - \frac{2}{13} a^{6} - \frac{1}{13} a^{5} - \frac{6}{13} a^{4} + \frac{2}{13} a^{3} + \frac{6}{13} a - \frac{4}{13}$, $\frac{1}{13199147287526156567} a^{19} + \frac{306370148966594138}{13199147287526156567} a^{18} + \frac{351268875014427704}{13199147287526156567} a^{17} - \frac{19189481456625894}{1015319022117396659} a^{16} - \frac{3632387497599538218}{13199147287526156567} a^{15} + \frac{391825636403561869}{13199147287526156567} a^{14} - \frac{4141726128720255935}{13199147287526156567} a^{13} - \frac{6463438835446725361}{13199147287526156567} a^{12} + \frac{3846658988941319191}{13199147287526156567} a^{11} + \frac{568523702865984597}{13199147287526156567} a^{10} - \frac{123818500497219628}{1015319022117396659} a^{9} - \frac{5432526556817818340}{13199147287526156567} a^{8} + \frac{4495131108789230170}{13199147287526156567} a^{7} + \frac{5192742675857367025}{13199147287526156567} a^{6} - \frac{3465610765827504830}{13199147287526156567} a^{5} - \frac{1532754421726712957}{13199147287526156567} a^{4} - \frac{6500134380971845815}{13199147287526156567} a^{3} - \frac{3616904066768947572}{13199147287526156567} a^{2} - \frac{269291581149017462}{13199147287526156567} a + \frac{33564396774616148}{13199147287526156567}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110941.143313 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.4.91794884831.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 347 | Data not computed | ||||||