Normalized defining polynomial
\( x^{20} - 9 x^{18} - 4 x^{17} + 39 x^{16} + 19 x^{15} - 157 x^{14} - 331 x^{13} - 622 x^{12} - 1049 x^{11} - 1406 x^{10} - 1926 x^{9} - 2826 x^{8} - 3212 x^{7} - 2216 x^{6} - 1720 x^{5} - 1269 x^{4} - 291 x^{3} - 38 x^{2} - 35 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-378622199332328495065595163427=-\,43^{3}\cdot 61^{8}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{901} a^{18} - \frac{126}{901} a^{17} - \frac{235}{901} a^{16} - \frac{327}{901} a^{15} - \frac{435}{901} a^{14} - \frac{222}{901} a^{13} - \frac{120}{901} a^{12} - \frac{151}{901} a^{11} - \frac{21}{901} a^{10} + \frac{299}{901} a^{9} - \frac{70}{901} a^{8} + \frac{132}{901} a^{7} + \frac{353}{901} a^{6} + \frac{58}{901} a^{5} - \frac{111}{901} a^{4} + \frac{73}{901} a^{3} + \frac{83}{901} a^{2} + \frac{422}{901} a - \frac{334}{901}$, $\frac{1}{326745100002028434830620578367} a^{19} - \frac{120472323664281089953865730}{326745100002028434830620578367} a^{18} + \frac{91082929359299934013680968046}{326745100002028434830620578367} a^{17} - \frac{88317648600146104562449179691}{326745100002028434830620578367} a^{16} - \frac{11549399900567393362142224320}{326745100002028434830620578367} a^{15} + \frac{46261647213325799750772447945}{326745100002028434830620578367} a^{14} - \frac{2269924102896995187826922839}{6165001886830725185483407139} a^{13} + \frac{108272947175858559117239619476}{326745100002028434830620578367} a^{12} - \frac{69687969864630117626249848448}{326745100002028434830620578367} a^{11} - \frac{90298311482332502333574194821}{326745100002028434830620578367} a^{10} + \frac{124512368225330299237965833865}{326745100002028434830620578367} a^{9} + \frac{6763359104919273741596789537}{326745100002028434830620578367} a^{8} - \frac{94644919486522582084527937695}{326745100002028434830620578367} a^{7} - \frac{64632798944861238061575308854}{326745100002028434830620578367} a^{6} + \frac{106286781935431217213042076408}{326745100002028434830620578367} a^{5} - \frac{142985959451049612515698620031}{326745100002028434830620578367} a^{4} - \frac{233705743976633211743191361}{19220300000119319695918857551} a^{3} - \frac{55032098594392754643796239238}{326745100002028434830620578367} a^{2} - \frac{126180582103526688962787122774}{326745100002028434830620578367} a + \frac{47369034285667485581372903618}{326745100002028434830620578367}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9786091.8597 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 280 conjugacy class representatives for t20n990 are not computed |
| Character table for t20n990 is not computed |
Intermediate fields
| 5.5.24217.1, 10.8.93835853629267.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 43 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 397 | Data not computed | ||||||