Normalized defining polynomial
\( x^{20} - 12 x^{18} - 7 x^{17} + 42 x^{16} + 15 x^{15} - 114 x^{14} - 17 x^{13} + 459 x^{12} + 961 x^{11} + 908 x^{10} + 601 x^{9} + 2364 x^{8} + 6542 x^{7} + 5008 x^{6} - 15256 x^{5} - 53136 x^{4} - 81440 x^{3} - 73115 x^{2} - 37500 x - 8525 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-367090109903933844075668896484375=-\,5^{11}\cdot 13^{12}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{70} a^{18} - \frac{1}{10} a^{16} - \frac{1}{10} a^{15} - \frac{2}{5} a^{14} + \frac{3}{14} a^{13} + \frac{13}{35} a^{12} + \frac{23}{70} a^{11} - \frac{3}{35} a^{10} + \frac{13}{35} a^{9} - \frac{16}{35} a^{8} - \frac{2}{35} a^{7} - \frac{1}{70} a^{6} - \frac{23}{70} a^{5} - \frac{1}{35} a^{4} - \frac{3}{35} a^{3} - \frac{8}{35} a^{2} - \frac{5}{14} a - \frac{1}{7}$, $\frac{1}{25997614609340880775693308710} a^{19} + \frac{27603479811092668306033137}{12998807304670440387846654355} a^{18} - \frac{323713830915486267322058061}{3713944944191554396527615530} a^{17} + \frac{135892949080014121442970105}{742788988838310879305523106} a^{16} + \frac{443406862197034631497610541}{1856972472095777198263807765} a^{15} - \frac{640598101242861912654411067}{25997614609340880775693308710} a^{14} + \frac{726618288200878925838614148}{12998807304670440387846654355} a^{13} - \frac{1279792923012892098703186379}{3713944944191554396527615530} a^{12} - \frac{4037775255806148192928618567}{12998807304670440387846654355} a^{11} - \frac{2754822798689877335742654294}{12998807304670440387846654355} a^{10} + \frac{1430297398921803586870922881}{12998807304670440387846654355} a^{9} - \frac{5384438311685453931490593206}{12998807304670440387846654355} a^{8} + \frac{8246641994171344860512730393}{25997614609340880775693308710} a^{7} - \frac{11306289877974542228620249137}{25997614609340880775693308710} a^{6} - \frac{191913108280578866693613922}{12998807304670440387846654355} a^{5} - \frac{4939869038869543617435676062}{12998807304670440387846654355} a^{4} - \frac{1037180703426624565511426848}{2599761460934088077569330871} a^{3} - \frac{9977071532212300593152231379}{25997614609340880775693308710} a^{2} - \frac{148779118563158977663226517}{371394494419155439652761553} a + \frac{365779171629428004285424544}{2599761460934088077569330871}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 227609658.024 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.19827925.1, 10.10.1965733049028125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | $20$ | R | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |