Properties

Label 20.6.35912527769...3136.2
Degree $20$
Signature $[6, 7]$
Discriminant $-\,2^{56}\cdot 2657^{4}$
Root discriminant $33.71$
Ramified primes $2, 2657$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1036

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, 0, -16, 0, 22, 0, 48, 0, -131, 0, 106, 0, 1, 0, -56, 0, 37, 0, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^18 + 37*x^16 - 56*x^14 + x^12 + 106*x^10 - 131*x^8 + 48*x^6 + 22*x^4 - 16*x^2 - 4)
 
gp: K = bnfinit(x^20 - 10*x^18 + 37*x^16 - 56*x^14 + x^12 + 106*x^10 - 131*x^8 + 48*x^6 + 22*x^4 - 16*x^2 - 4, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{18} + 37 x^{16} - 56 x^{14} + x^{12} + 106 x^{10} - 131 x^{8} + 48 x^{6} + 22 x^{4} - 16 x^{2} - 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-3591252776983469258474191323136=-\,2^{56}\cdot 2657^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 2657$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{12} - \frac{2}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{2}{5} a^{9} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{10} a^{16} - \frac{3}{10} a^{12} - \frac{3}{10} a^{8} + \frac{2}{5} a^{6} - \frac{3}{10} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{10} a^{17} - \frac{3}{10} a^{13} - \frac{3}{10} a^{9} + \frac{2}{5} a^{7} - \frac{3}{10} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{10} a^{18} - \frac{1}{10} a^{14} + \frac{1}{5} a^{12} + \frac{3}{10} a^{10} - \frac{3}{10} a^{6} - \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{10} a^{19} - \frac{1}{10} a^{15} + \frac{1}{5} a^{13} + \frac{3}{10} a^{11} - \frac{3}{10} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 52408552.5886 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1036:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 396 conjugacy class representatives for t20n1036 are not computed
Character table for t20n1036 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 10.6.925322313728.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.22.17$x^{8} + 2 x^{4} + 16 x^{3} + 16 x + 4$$4$$2$$22$$Q_8:C_2$$[2, 3, 4]^{2}$
2.12.34.277$x^{12} + 4 x^{11} + 8 x^{9} + 8 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} - 2$$12$$1$$34$12T193$[2, 8/3, 8/3, 3, 7/2, 23/6, 23/6]_{3}^{2}$
2657Data not computed