Normalized defining polynomial
\( x^{20} - 6 x^{19} + 21 x^{18} - 14 x^{17} + 6 x^{16} - x^{15} + 689 x^{14} - 845 x^{13} + 2137 x^{12} + 560 x^{11} - 2812 x^{10} + 2170 x^{9} - 1466 x^{8} - 723 x^{7} + 428 x^{6} - 144 x^{5} + 253 x^{4} + 23 x^{3} + 51 x^{2} - 8 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-33974138629905542100286865234375=-\,5^{14}\cdot 19^{9}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{72950097057444072842743091151391022} a^{19} - \frac{4238978697916512446370134557856702}{36475048528722036421371545575695511} a^{18} - \frac{384271277368993176944882761671781}{36475048528722036421371545575695511} a^{17} - \frac{1578375386860666401103083982011011}{72950097057444072842743091151391022} a^{16} + \frac{10190807157531641563695964965839847}{72950097057444072842743091151391022} a^{15} + \frac{26029494951242198606405451502274207}{72950097057444072842743091151391022} a^{14} - \frac{4155674995213667799971832145115236}{36475048528722036421371545575695511} a^{13} - \frac{254369971884972735989936489948447}{72950097057444072842743091151391022} a^{12} - \frac{5737704580237593781341002318642335}{72950097057444072842743091151391022} a^{11} - \frac{7607362819760891456601961998683467}{72950097057444072842743091151391022} a^{10} - \frac{11870208547292734842430594083922857}{36475048528722036421371545575695511} a^{9} - \frac{5013662612684786363185384606822923}{72950097057444072842743091151391022} a^{8} - \frac{29641699895882795261398600936784345}{72950097057444072842743091151391022} a^{7} + \frac{15103682690769542795289830387048955}{72950097057444072842743091151391022} a^{6} - \frac{12233723671570813278341914232988711}{72950097057444072842743091151391022} a^{5} + \frac{9183804351944323222687839582347955}{36475048528722036421371545575695511} a^{4} + \frac{2512029056248148671934933550609488}{36475048528722036421371545575695511} a^{3} + \frac{17872429373497972509518096315186890}{36475048528722036421371545575695511} a^{2} + \frac{8826764425432792158402998503192363}{36475048528722036421371545575695511} a + \frac{22101118915960294779893381633308825}{72950097057444072842743091151391022}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110224914.643 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.9932496465625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | $20$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |