Properties

Label 20.6.31951141691...7779.2
Degree $20$
Signature $[6, 7]$
Discriminant $-\,11^{17}\cdot 43^{6}$
Root discriminant $23.73$
Ramified primes $11, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T326

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, 11, 42, -69, -138, 280, 37, -475, 418, 100, -447, 342, 8, -90, 71, 10, 8, 6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 6*x^18 + 8*x^17 + 10*x^16 + 71*x^15 - 90*x^14 + 8*x^13 + 342*x^12 - 447*x^11 + 100*x^10 + 418*x^9 - 475*x^8 + 37*x^7 + 280*x^6 - 138*x^5 - 69*x^4 + 42*x^3 + 11*x^2 - 4*x - 1)
 
gp: K = bnfinit(x^20 - x^19 + 6*x^18 + 8*x^17 + 10*x^16 + 71*x^15 - 90*x^14 + 8*x^13 + 342*x^12 - 447*x^11 + 100*x^10 + 418*x^9 - 475*x^8 + 37*x^7 + 280*x^6 - 138*x^5 - 69*x^4 + 42*x^3 + 11*x^2 - 4*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 6 x^{18} + 8 x^{17} + 10 x^{16} + 71 x^{15} - 90 x^{14} + 8 x^{13} + 342 x^{12} - 447 x^{11} + 100 x^{10} + 418 x^{9} - 475 x^{8} + 37 x^{7} + 280 x^{6} - 138 x^{5} - 69 x^{4} + 42 x^{3} + 11 x^{2} - 4 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-3195114169182285566595267779=-\,11^{17}\cdot 43^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{3}{11} a^{17} - \frac{1}{11} a^{14} - \frac{4}{11} a^{13} - \frac{4}{11} a^{12} - \frac{2}{11} a^{11} - \frac{2}{11} a^{10} - \frac{1}{11} a^{9} + \frac{5}{11} a^{8} + \frac{2}{11} a^{7} + \frac{2}{11} a^{5} + \frac{1}{11} a^{4} + \frac{1}{11} a^{3} + \frac{5}{11} a^{2} - \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{27273471873203347} a^{19} + \frac{314698841656165}{27273471873203347} a^{18} - \frac{13429716733874106}{27273471873203347} a^{17} - \frac{832510760501922}{2479406533927577} a^{16} + \frac{1143133896464537}{27273471873203347} a^{15} - \frac{3438011963908011}{27273471873203347} a^{14} + \frac{1636411284550360}{27273471873203347} a^{13} - \frac{6179706599625151}{27273471873203347} a^{12} - \frac{9497189859351343}{27273471873203347} a^{11} + \frac{3417145373066167}{27273471873203347} a^{10} - \frac{9810401410708423}{27273471873203347} a^{9} + \frac{1827550652596362}{27273471873203347} a^{8} - \frac{5981950862109295}{27273471873203347} a^{7} + \frac{689735037383801}{27273471873203347} a^{6} - \frac{793543016998276}{27273471873203347} a^{5} - \frac{2827486267490035}{27273471873203347} a^{4} + \frac{838191586165721}{27273471873203347} a^{3} - \frac{10534146925915803}{27273471873203347} a^{2} + \frac{5269701207046986}{27273471873203347} a + \frac{3304168301694566}{27273471873203347}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1096939.79122 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T326:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 80 conjugacy class representatives for t20n326 are not computed
Character table for t20n326 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.396349570969.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$43$$\Q_{43}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{43}$$x + 9$$1$$1$$0$Trivial$[\ ]$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.4.3.1$x^{4} + 387$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
43.4.3.1$x^{4} + 387$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$