Normalized defining polynomial
\( x^{20} - 2 x^{19} - 10 x^{18} + 18 x^{17} + 18 x^{16} + 74 x^{15} - 338 x^{14} + 252 x^{13} - 95 x^{12} + 184 x^{11} + 1156 x^{10} - 3512 x^{9} + 4896 x^{8} - 6534 x^{7} + 7762 x^{6} - 6956 x^{5} + 5508 x^{4} - 3418 x^{3} + 1830 x^{2} - 1156 x + 191 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3042351129053791179853791232=-\,2^{30}\cdot 4903^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{16} + \frac{1}{5} a^{15} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{25} a^{18} - \frac{1}{25} a^{17} - \frac{1}{5} a^{16} + \frac{7}{25} a^{15} - \frac{1}{5} a^{14} + \frac{11}{25} a^{13} - \frac{7}{25} a^{12} + \frac{11}{25} a^{11} - \frac{1}{25} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{6}{25} a^{7} - \frac{4}{25} a^{6} - \frac{2}{25} a^{5} + \frac{11}{25} a^{4} - \frac{7}{25} a^{3} - \frac{8}{25} a^{2} + \frac{7}{25} a - \frac{11}{25}$, $\frac{1}{68672787376420192622098027625} a^{19} + \frac{122708618411020462890068046}{68672787376420192622098027625} a^{18} + \frac{4790209456258723337422498298}{68672787376420192622098027625} a^{17} + \frac{30646977753857132840044455222}{68672787376420192622098027625} a^{16} + \frac{16781950326737316836664021924}{68672787376420192622098027625} a^{15} + \frac{4735247111246642050727294376}{68672787376420192622098027625} a^{14} + \frac{5965562869384457878143601792}{13734557475284038524419605525} a^{13} + \frac{10587796608414968086619833682}{68672787376420192622098027625} a^{12} - \frac{29146527599839076720794251934}{68672787376420192622098027625} a^{11} - \frac{28107660213586657160290625423}{68672787376420192622098027625} a^{10} + \frac{31488366642035348683723870002}{68672787376420192622098027625} a^{9} + \frac{22417943827705869485856189734}{68672787376420192622098027625} a^{8} + \frac{2163498268372461048697746031}{5282522105878476355546002125} a^{7} - \frac{3613949899067169338061269143}{13734557475284038524419605525} a^{6} - \frac{33477537779801731356448855083}{68672787376420192622098027625} a^{5} + \frac{147298247423634579504010522}{13734557475284038524419605525} a^{4} + \frac{29867657297421987588425683013}{68672787376420192622098027625} a^{3} + \frac{9868247801249852125135861881}{68672787376420192622098027625} a^{2} - \frac{24431144335348620769914779432}{68672787376420192622098027625} a + \frac{22168962602865001451646062558}{68672787376420192622098027625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 618800.475813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.3.4903.1, 10.6.24616354816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 4903 | Data not computed | ||||||