Normalized defining polynomial
\( x^{20} - 3 x^{19} + 10 x^{18} - 5 x^{17} + 2 x^{16} + 20 x^{15} - 22 x^{14} + 6 x^{13} - 53 x^{12} + 43 x^{11} - 84 x^{10} + 33 x^{9} + 70 x^{8} + 19 x^{7} + 18 x^{6} - 55 x^{5} - 12 x^{4} + 21 x^{3} - 3 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29495477290631717860845248=-\,2^{6}\cdot 19^{8}\cdot 83^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} - \frac{1}{13} a^{15} + \frac{2}{13} a^{14} + \frac{2}{13} a^{13} - \frac{5}{13} a^{12} - \frac{6}{13} a^{11} - \frac{1}{13} a^{10} - \frac{1}{13} a^{9} + \frac{5}{13} a^{8} - \frac{4}{13} a^{7} + \frac{5}{13} a^{5} + \frac{4}{13} a^{4} + \frac{5}{13} a^{3} + \frac{2}{13} a^{2} + \frac{1}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{17} + \frac{1}{13} a^{15} + \frac{4}{13} a^{14} - \frac{3}{13} a^{13} + \frac{2}{13} a^{12} + \frac{6}{13} a^{11} - \frac{2}{13} a^{10} + \frac{4}{13} a^{9} + \frac{1}{13} a^{8} - \frac{4}{13} a^{7} + \frac{5}{13} a^{6} - \frac{4}{13} a^{5} - \frac{4}{13} a^{4} - \frac{6}{13} a^{3} + \frac{3}{13} a^{2} - \frac{5}{13} a - \frac{6}{13}$, $\frac{1}{14027} a^{18} + \frac{290}{14027} a^{17} - \frac{413}{14027} a^{16} - \frac{5402}{14027} a^{15} - \frac{2934}{14027} a^{14} + \frac{1385}{14027} a^{13} - \frac{659}{14027} a^{12} + \frac{5340}{14027} a^{11} - \frac{2320}{14027} a^{10} - \frac{3456}{14027} a^{9} - \frac{5099}{14027} a^{8} + \frac{2438}{14027} a^{7} + \frac{432}{14027} a^{6} - \frac{3364}{14027} a^{5} + \frac{3964}{14027} a^{4} + \frac{2433}{14027} a^{3} - \frac{4045}{14027} a^{2} - \frac{3378}{14027} a + \frac{3812}{14027}$, $\frac{1}{221232244922} a^{19} + \frac{675581}{110616122461} a^{18} + \frac{725348547}{110616122461} a^{17} - \frac{1928583265}{221232244922} a^{16} + \frac{2790982957}{221232244922} a^{15} + \frac{78711210493}{221232244922} a^{14} - \frac{79221257727}{221232244922} a^{13} + \frac{18891393049}{221232244922} a^{12} - \frac{14669889950}{110616122461} a^{11} + \frac{72868015503}{221232244922} a^{10} - \frac{5717100295}{221232244922} a^{9} + \frac{20592167075}{110616122461} a^{8} + \frac{1824386372}{6506830733} a^{7} + \frac{60252138465}{221232244922} a^{6} - \frac{82230304161}{221232244922} a^{5} - \frac{2628072348}{6506830733} a^{4} + \frac{13197669851}{110616122461} a^{3} + \frac{68241897551}{221232244922} a^{2} - \frac{51335477130}{110616122461} a + \frac{86234834331}{221232244922}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101432.323586 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.4.74515853627.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $19$ | 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 83 | Data not computed | ||||||