Properties

Label 20.6.26101424948...8128.2
Degree $20$
Signature $[6, 7]$
Discriminant $-\,2^{40}\cdot 3^{16}\cdot 223^{5}$
Root discriminant $37.22$
Ramified primes $2, 3, 223$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T797

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![383, -3024, 9616, -16608, 16990, -8376, -5030, 15216, -16185, 9588, -2156, -1248, 1026, -12, -284, 72, 50, -12, -8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^18 - 12*x^17 + 50*x^16 + 72*x^15 - 284*x^14 - 12*x^13 + 1026*x^12 - 1248*x^11 - 2156*x^10 + 9588*x^9 - 16185*x^8 + 15216*x^7 - 5030*x^6 - 8376*x^5 + 16990*x^4 - 16608*x^3 + 9616*x^2 - 3024*x + 383)
 
gp: K = bnfinit(x^20 - 8*x^18 - 12*x^17 + 50*x^16 + 72*x^15 - 284*x^14 - 12*x^13 + 1026*x^12 - 1248*x^11 - 2156*x^10 + 9588*x^9 - 16185*x^8 + 15216*x^7 - 5030*x^6 - 8376*x^5 + 16990*x^4 - 16608*x^3 + 9616*x^2 - 3024*x + 383, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{18} - 12 x^{17} + 50 x^{16} + 72 x^{15} - 284 x^{14} - 12 x^{13} + 1026 x^{12} - 1248 x^{11} - 2156 x^{10} + 9588 x^{9} - 16185 x^{8} + 15216 x^{7} - 5030 x^{6} - 8376 x^{5} + 16990 x^{4} - 16608 x^{3} + 9616 x^{2} - 3024 x + 383 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-26101424948512167208849797808128=-\,2^{40}\cdot 3^{16}\cdot 223^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 223$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{712603450169427006060376097913469} a^{19} - \frac{179277890635472914095254156444990}{712603450169427006060376097913469} a^{18} + \frac{330117630771294609639811871608541}{712603450169427006060376097913469} a^{17} - \frac{185054902975004618101811686459826}{712603450169427006060376097913469} a^{16} + \frac{137336612900841572974930116152565}{712603450169427006060376097913469} a^{15} + \frac{149372378358537701059416373090222}{712603450169427006060376097913469} a^{14} - \frac{208740338453727433400176203156307}{712603450169427006060376097913469} a^{13} + \frac{162030669663109364821985720340802}{712603450169427006060376097913469} a^{12} + \frac{260221189011730538892241203471752}{712603450169427006060376097913469} a^{11} - \frac{250027731732946565931284029456240}{712603450169427006060376097913469} a^{10} - \frac{83687411901550866861104133622905}{712603450169427006060376097913469} a^{9} + \frac{285328229425733562496572756306650}{712603450169427006060376097913469} a^{8} + \frac{55435207309902473311031600036131}{712603450169427006060376097913469} a^{7} - \frac{335998921198804917503547684658319}{712603450169427006060376097913469} a^{6} - \frac{119721337767032626923280992310733}{712603450169427006060376097913469} a^{5} + \frac{314144764652616861972062435049430}{712603450169427006060376097913469} a^{4} + \frac{310771156909812072575878474984108}{712603450169427006060376097913469} a^{3} - \frac{270844863808490908713032496180906}{712603450169427006060376097913469} a^{2} + \frac{204913188164009695204036227731471}{712603450169427006060376097913469} a - \frac{265190683189833059019623559687776}{712603450169427006060376097913469}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 69338986.7785 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T797:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 108 conjugacy class representatives for t20n797 are not computed
Character table for t20n797 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 5.3.18063.1, 10.6.10691279880192.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
223Data not computed