Normalized defining polynomial
\( x^{20} - 10 x^{18} - 16 x^{17} + 36 x^{16} + 176 x^{15} + 178 x^{14} - 352 x^{13} - 984 x^{12} - 336 x^{11} + 1158 x^{10} + 1024 x^{9} - 831 x^{8} - 1360 x^{7} + 584 x^{6} + 956 x^{5} - 412 x^{4} - 72 x^{3} + 24 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26101424948512167208849797808128=-\,2^{40}\cdot 3^{16}\cdot 223^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{641} a^{18} - \frac{67}{641} a^{17} + \frac{135}{641} a^{16} - \frac{53}{641} a^{15} - \frac{184}{641} a^{14} - \frac{203}{641} a^{13} + \frac{287}{641} a^{12} + \frac{106}{641} a^{11} + \frac{264}{641} a^{10} - \frac{302}{641} a^{9} + \frac{172}{641} a^{8} + \frac{158}{641} a^{7} - \frac{282}{641} a^{6} - \frac{255}{641} a^{5} - \frac{222}{641} a^{4} - \frac{123}{641} a^{3} - \frac{200}{641} a^{2} + \frac{226}{641} a - \frac{130}{641}$, $\frac{1}{1418885408341506102302539} a^{19} + \frac{443578091003076320852}{1418885408341506102302539} a^{18} + \frac{169775332097864039057947}{1418885408341506102302539} a^{17} + \frac{196398613433567322508872}{1418885408341506102302539} a^{16} - \frac{148724656972806582394318}{1418885408341506102302539} a^{15} + \frac{165070190018149641778013}{1418885408341506102302539} a^{14} - \frac{1195077870274365195233}{8201649759199457238743} a^{13} - \frac{385438534661238173944125}{1418885408341506102302539} a^{12} + \frac{517204042656852156862173}{1418885408341506102302539} a^{11} - \frac{598855357421988829987040}{1418885408341506102302539} a^{10} - \frac{99913452127665626189729}{1418885408341506102302539} a^{9} + \frac{661305797171628241049085}{1418885408341506102302539} a^{8} + \frac{33976248467906973844639}{109145031410885084792503} a^{7} + \frac{260435777271629523638534}{1418885408341506102302539} a^{6} + \frac{493423129712393888162372}{1418885408341506102302539} a^{5} + \frac{563982225077803700608140}{1418885408341506102302539} a^{4} + \frac{269147209372944866709007}{1418885408341506102302539} a^{3} + \frac{206636801770728363699740}{1418885408341506102302539} a^{2} + \frac{627613499666568876700907}{1418885408341506102302539} a - \frac{245308801923906640780309}{1418885408341506102302539}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 89058324.741 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.3.18063.1, 10.6.10691279880192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 223 | Data not computed | ||||||