Normalized defining polynomial
\( x^{20} - x^{19} + 4 x^{18} - 12 x^{17} - 4 x^{16} + 3 x^{15} - x^{14} + 59 x^{13} - 29 x^{12} + 21 x^{11} - 20 x^{10} - 28 x^{9} - 29 x^{8} - 3 x^{7} + 4 x^{6} - 54 x^{5} - 2 x^{4} + 25 x^{3} + 8 x^{2} - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2272827097433843169248046875=-\,5^{10}\cdot 11^{11}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{5}{11} a^{17} + \frac{3}{11} a^{16} + \frac{5}{11} a^{15} - \frac{1}{11} a^{14} - \frac{4}{11} a^{13} - \frac{5}{11} a^{12} - \frac{1}{11} a^{11} - \frac{1}{11} a^{10} + \frac{2}{11} a^{9} + \frac{1}{11} a^{8} + \frac{4}{11} a^{7} - \frac{3}{11} a^{6} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} + \frac{1}{11} a^{3} - \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{5}{11}$, $\frac{1}{180764213786763959} a^{19} - \frac{1286375423802871}{180764213786763959} a^{18} + \frac{47606434529584615}{180764213786763959} a^{17} - \frac{70578161371168963}{180764213786763959} a^{16} + \frac{20287221556465731}{180764213786763959} a^{15} + \frac{35346086329524901}{180764213786763959} a^{14} - \frac{86178215746647084}{180764213786763959} a^{13} - \frac{66366692311842132}{180764213786763959} a^{12} - \frac{65217966380657740}{180764213786763959} a^{11} - \frac{66554893386122887}{180764213786763959} a^{10} - \frac{60185701578172972}{180764213786763959} a^{9} + \frac{85888957867330589}{180764213786763959} a^{8} - \frac{50102743348279636}{180764213786763959} a^{7} - \frac{16551034332425947}{180764213786763959} a^{6} + \frac{26517876479268512}{180764213786763959} a^{5} + \frac{58854911097608055}{180764213786763959} a^{4} - \frac{35939619642703636}{180764213786763959} a^{3} + \frac{10658977985862265}{180764213786763959} a^{2} - \frac{25147170827260773}{180764213786763959} a + \frac{4250600927623328}{16433110344251269}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 709138.335557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28800 |
| The 41 conjugacy class representatives for t20n547 |
| Character table for t20n547 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 10.6.1306755003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | R | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |