Normalized defining polynomial
\( x^{20} - 2 x^{19} - 22 x^{18} + 66 x^{17} + 39 x^{16} - 84 x^{15} - 300 x^{14} - 2076 x^{13} + 7976 x^{12} - 5260 x^{11} - 5116 x^{10} + 3436 x^{9} - 632 x^{8} + 43380 x^{7} - 28732 x^{6} - 19220 x^{5} + 15491 x^{4} - 5370 x^{3} + 13378 x^{2} - 9222 x + 2269 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21800592438355578532659200000000000=-\,2^{40}\cdot 5^{11}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{2}{5} a^{4} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{13} + \frac{1}{10} a^{10} + \frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} + \frac{1}{10} a^{5} - \frac{2}{5} a^{4} - \frac{3}{10} a^{2} + \frac{1}{10} a - \frac{1}{10}$, $\frac{1}{100} a^{16} + \frac{1}{50} a^{15} + \frac{2}{25} a^{13} + \frac{9}{50} a^{12} - \frac{3}{25} a^{11} + \frac{4}{25} a^{10} + \frac{6}{25} a^{9} + \frac{1}{5} a^{8} + \frac{1}{50} a^{7} + \frac{3}{25} a^{6} + \frac{12}{25} a^{5} - \frac{7}{50} a^{4} - \frac{12}{25} a^{3} - \frac{1}{5} a^{2} + \frac{11}{25} a - \frac{1}{100}$, $\frac{1}{300} a^{17} + \frac{1}{300} a^{16} + \frac{2}{75} a^{15} + \frac{2}{75} a^{14} + \frac{1}{15} a^{13} + \frac{7}{30} a^{12} + \frac{7}{75} a^{11} - \frac{8}{75} a^{10} - \frac{11}{75} a^{9} - \frac{2}{75} a^{8} - \frac{7}{15} a^{7} + \frac{8}{25} a^{6} + \frac{4}{25} a^{5} + \frac{13}{150} a^{4} + \frac{32}{75} a^{3} - \frac{29}{75} a^{2} + \frac{1}{20} a + \frac{91}{300}$, $\frac{1}{9000} a^{18} - \frac{1}{900} a^{17} - \frac{1}{3000} a^{16} - \frac{1}{45} a^{15} + \frac{11}{4500} a^{14} - \frac{13}{75} a^{13} - \frac{431}{4500} a^{12} - \frac{43}{225} a^{11} - \frac{191}{4500} a^{10} - \frac{421}{2250} a^{9} + \frac{529}{4500} a^{8} - \frac{163}{1125} a^{7} - \frac{141}{500} a^{6} + \frac{241}{1125} a^{5} - \frac{19}{4500} a^{4} - \frac{101}{375} a^{3} + \frac{3901}{9000} a^{2} + \frac{1643}{4500} a - \frac{2471}{9000}$, $\frac{1}{404942385189531897834132343155301989000} a^{19} - \frac{414524726036967017591765346182693}{12270981369379754479822192216827333000} a^{18} - \frac{61172720949787087546761739122947153}{36812944108139263439466576650481999000} a^{17} + \frac{95390444595473892600397759107496487}{36812944108139263439466576650481999000} a^{16} + \frac{1190392415833444060504009355084402131}{202471192594765948917066171577650994500} a^{15} - \frac{8746821470207008360405591920943264909}{202471192594765948917066171577650994500} a^{14} - \frac{49207556234131300868657436394848023711}{202471192594765948917066171577650994500} a^{13} - \frac{3533939122665105916769525013992392531}{202471192594765948917066171577650994500} a^{12} - \frac{26381735304843460939156731029071452031}{202471192594765948917066171577650994500} a^{11} - \frac{18421882203218800447452579288442696603}{202471192594765948917066171577650994500} a^{10} + \frac{6117418299142613975365752032351315897}{202471192594765948917066171577650994500} a^{9} - \frac{17491578809251828091494530337636709}{523181376213865501077690365833723500} a^{8} - \frac{33025712979929445924681629599862303701}{202471192594765948917066171577650994500} a^{7} + \frac{3981080653584750080644027810637057611}{8098847703790637956682646863106039780} a^{6} + \frac{427074543075257904739954585249467683}{2699615901263545985560882287702013260} a^{5} - \frac{25222099359180097367001281140397751451}{202471192594765948917066171577650994500} a^{4} - \frac{38414261958269715596685550872305706443}{404942385189531897834132343155301989000} a^{3} + \frac{119392724957958883929111279312082452347}{404942385189531897834132343155301989000} a^{2} - \frac{33620304800505950367018033405983631899}{80988477037906379566826468631060397800} a + \frac{159490167649700073456274196551045579369}{404942385189531897834132343155301989000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5573225606.27 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.5745920.1, 10.10.4126949580800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $67$ | 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |