Normalized defining polynomial
\( x^{20} - 5 x^{19} + 55 x^{17} - 140 x^{16} + 23 x^{15} + 360 x^{14} - 285 x^{13} - 215 x^{12} - 1610 x^{11} + 4630 x^{10} + 2110 x^{9} - 16815 x^{8} + 10795 x^{7} + 22820 x^{6} - 44429 x^{5} + 30310 x^{4} + 805 x^{3} - 21670 x^{2} + 18225 x - 4721 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21696405043600000000000000000000=-\,2^{22}\cdot 5^{20}\cdot 7^{8}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{8} + \frac{2}{5} a^{3}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{9} + \frac{2}{5} a^{4}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{12} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{2} a^{3} - \frac{1}{5} a^{2} - \frac{3}{10}$, $\frac{1}{50} a^{16} + \frac{1}{25} a^{15} + \frac{2}{25} a^{14} - \frac{3}{50} a^{13} - \frac{1}{25} a^{12} + \frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{7}{25} a^{9} - \frac{1}{25} a^{8} + \frac{6}{25} a^{7} - \frac{8}{25} a^{6} - \frac{2}{25} a^{5} - \frac{17}{50} a^{4} + \frac{2}{25} a^{3} + \frac{8}{25} a^{2} - \frac{19}{50} a - \frac{7}{25}$, $\frac{1}{50} a^{17} - \frac{1}{50} a^{14} + \frac{2}{25} a^{13} - \frac{2}{25} a^{12} + \frac{1}{25} a^{11} + \frac{2}{25} a^{10} + \frac{8}{25} a^{9} + \frac{8}{25} a^{8} + \frac{2}{5} a^{7} + \frac{9}{25} a^{6} - \frac{19}{50} a^{5} + \frac{4}{25} a^{4} + \frac{4}{25} a^{3} - \frac{21}{50} a^{2} - \frac{3}{25} a - \frac{1}{25}$, $\frac{1}{50} a^{18} - \frac{1}{50} a^{15} + \frac{2}{25} a^{14} - \frac{2}{25} a^{13} + \frac{1}{25} a^{12} + \frac{2}{25} a^{11} - \frac{2}{25} a^{10} + \frac{8}{25} a^{9} + \frac{2}{5} a^{8} + \frac{9}{25} a^{7} - \frac{19}{50} a^{6} - \frac{11}{25} a^{5} + \frac{4}{25} a^{4} - \frac{21}{50} a^{3} - \frac{3}{25} a^{2} - \frac{1}{25} a + \frac{1}{5}$, $\frac{1}{429828556011428339343484661746700} a^{19} - \frac{2136354711196530862750724074353}{214914278005714169671742330873350} a^{18} + \frac{102688211595711623363594549973}{21491427800571416967174233087335} a^{17} + \frac{2241796191902993595417149793219}{429828556011428339343484661746700} a^{16} + \frac{136010311538352214894751281649}{17193142240457133573739386469868} a^{15} - \frac{3360089126116545195264188523702}{107457139002857084835871165436675} a^{14} + \frac{2540658372313914666066776757414}{107457139002857084835871165436675} a^{13} + \frac{26346389184671573684117300001887}{429828556011428339343484661746700} a^{12} - \frac{1453306789057589357228371644549}{214914278005714169671742330873350} a^{11} - \frac{1025590054343529386009438206811}{21491427800571416967174233087335} a^{10} + \frac{86289142728757001987872993839677}{214914278005714169671742330873350} a^{9} - \frac{22906162259917043135497965345258}{107457139002857084835871165436675} a^{8} + \frac{170259148592922061993555150951613}{429828556011428339343484661746700} a^{7} + \frac{85712522161205709849575694744841}{214914278005714169671742330873350} a^{6} + \frac{5804407593147968025092482517177}{21491427800571416967174233087335} a^{5} - \frac{10812172268707092005647735299529}{429828556011428339343484661746700} a^{4} + \frac{36812873862971748633348785709391}{85965711202285667868696932349340} a^{3} - \frac{22561981301231528380202686934739}{107457139002857084835871165436675} a^{2} - \frac{60492825059460470953488672119189}{214914278005714169671742330873350} a - \frac{7588444067272851867349268547485}{17193142240457133573739386469868}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 251459130.668 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2450000.1, 10.10.582242500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.7 | $x^{10} + 2 x^{8} - 2 x^{7} + 2 x^{5} + 2 x^{2} + 6$ | $10$ | $1$ | $14$ | $((C_2^4 : C_5):C_4)\times C_2$ | $[8/5, 8/5, 8/5, 8/5, 2]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |
| 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |