Normalized defining polynomial
\( x^{20} - 4 x^{19} + 26 x^{18} - 72 x^{17} + 122 x^{16} + 52 x^{15} - 1462 x^{14} + 2088 x^{13} - 2936 x^{12} - 3448 x^{11} - 1864 x^{10} + 52944 x^{9} - 32472 x^{8} - 51840 x^{7} + 174368 x^{6} - 162304 x^{5} + 88512 x^{4} - 10624 x^{3} - 31872 x^{2} + 64768 x - 33664 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20562460332300807986799747065184256=-\,2^{48}\cdot 31^{7}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} - \frac{3}{32} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2}$, $\frac{1}{128} a^{17} - \frac{1}{64} a^{15} + \frac{3}{64} a^{13} - \frac{1}{32} a^{12} - \frac{3}{64} a^{11} + \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{3}{16} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{256} a^{18} + \frac{1}{128} a^{14} + \frac{3}{64} a^{13} - \frac{5}{128} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} - \frac{3}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{32} a^{6} - \frac{3}{8} a^{5} + \frac{5}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{3696904485084629866539739589355241884149915136} a^{19} - \frac{524662792996005381615514543387319576728437}{308075373757052488878311632446270157012492928} a^{18} - \frac{359980108946491011188527233380194052607689}{462113060635578733317467448669405235518739392} a^{17} + \frac{1389646533893320510805342529476688606416369}{924226121271157466634934897338810471037478784} a^{16} - \frac{9167609092403037646477342842785687965616119}{1848452242542314933269869794677620942074957568} a^{15} - \frac{27194710780127492252330068383034284111532069}{924226121271157466634934897338810471037478784} a^{14} + \frac{10364396283723171206442460152547574673049499}{1848452242542314933269869794677620942074957568} a^{13} - \frac{68051190108057818454768400671261031535863}{462113060635578733317467448669405235518739392} a^{12} - \frac{53283702549479114360069261810495706743836321}{924226121271157466634934897338810471037478784} a^{11} + \frac{5186547344288034368948203367917812132049441}{231056530317789366658733724334702617759369696} a^{10} - \frac{8210526198380850388132807229294353908945227}{77018843439263122219577908111567539253123232} a^{9} - \frac{1062554714362894049081223380397804811249741}{19254710859815780554894477027891884813280808} a^{8} + \frac{35708545959339705598519355281156104609730383}{154037686878526244439155816223135078506246464} a^{7} - \frac{2472073497836070609001870383279726381210235}{19254710859815780554894477027891884813280808} a^{6} - \frac{1196969229118001103044447121820993589859953}{2783813618286618875406430413671115876618912} a^{5} + \frac{2425868683208054757655242151947818958867689}{115528265158894683329366862167351308879684848} a^{4} - \frac{417506188097785782011178603801352882309355}{1958106189133808192023167155378835743723472} a^{3} + \frac{378236443995297894321705510547510843615257}{2406838857476972569361809628486485601660101} a^{2} + \frac{3037837877717449600896116418591475920803297}{19254710859815780554894477027891884813280808} a + \frac{10544605253034467067740074510583248956837317}{28882066289723670832341715541837827219921212}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8804873385.68 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.8.26.3 | $x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 31.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 227 | Data not computed | ||||||