Normalized defining polynomial
\( x^{20} + 8 x^{18} - 4 x^{17} + 197 x^{16} - 640 x^{15} - 184 x^{14} + 2424 x^{13} - 8218 x^{12} + 18088 x^{11} - 25840 x^{10} + 51592 x^{9} - 109238 x^{8} + 143472 x^{7} - 109512 x^{6} + 22904 x^{5} + 54417 x^{4} - 80120 x^{3} + 29960 x^{2} + 18092 x - 3671 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20562460332300807986799747065184256=-\,2^{48}\cdot 31^{7}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{96} a^{16} - \frac{1}{8} a^{15} - \frac{5}{48} a^{14} - \frac{1}{12} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{16} a^{10} - \frac{1}{12} a^{9} - \frac{1}{24} a^{8} + \frac{1}{24} a^{7} - \frac{7}{48} a^{6} - \frac{1}{2} a^{5} + \frac{1}{48} a^{4} - \frac{1}{8} a^{3} + \frac{11}{48} a^{2} + \frac{23}{96}$, $\frac{1}{96} a^{17} - \frac{5}{48} a^{15} - \frac{1}{12} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{12} - \frac{1}{16} a^{11} - \frac{1}{12} a^{10} - \frac{1}{24} a^{9} - \frac{5}{24} a^{8} - \frac{7}{48} a^{7} + \frac{1}{48} a^{5} - \frac{1}{8} a^{4} + \frac{11}{48} a^{3} - \frac{1}{2} a^{2} + \frac{23}{96} a + \frac{1}{8}$, $\frac{1}{192} a^{18} - \frac{1}{192} a^{16} + \frac{1}{48} a^{15} - \frac{1}{8} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} + \frac{1}{48} a^{11} - \frac{17}{96} a^{10} + \frac{7}{48} a^{9} + \frac{11}{96} a^{8} - \frac{3}{16} a^{7} - \frac{1}{48} a^{6} - \frac{7}{16} a^{5} - \frac{1}{6} a^{4} - \frac{3}{16} a^{3} + \frac{5}{192} a^{2} + \frac{3}{16} a - \frac{19}{64}$, $\frac{1}{20699103224654372413053236042565684383296511040} a^{19} - \frac{57705176371736915746527272777524553101907}{215615658590149712635971208776725878992671990} a^{18} + \frac{31765209624066442228297238947764483526654429}{6899701074884790804351078680855228127765503680} a^{17} + \frac{2257730160600708901764508743744643897342821}{1724925268721197701087769670213807031941375920} a^{16} + \frac{188646512500109967195285872264628287728869061}{2587387903081796551631654505320710547912063880} a^{15} - \frac{547590833554256977446018884525293206834438919}{5174775806163593103263309010641421095824127760} a^{14} + \frac{531822745656827075044272816220541889840139727}{5174775806163593103263309010641421095824127760} a^{13} - \frac{370717448360506186675486588878492119141505623}{5174775806163593103263309010641421095824127760} a^{12} - \frac{563200556955188660618115064318521557489842577}{10349551612327186206526618021282842191648255520} a^{11} - \frac{710658021423246844019472395280729528411079741}{5174775806163593103263309010641421095824127760} a^{10} - \frac{2474860160664847817352102617939778640362893621}{10349551612327186206526618021282842191648255520} a^{9} + \frac{1099445430642420201649197966353472806117619419}{5174775806163593103263309010641421095824127760} a^{8} - \frac{197034533886726008374319565153141403813120061}{1034955161232718620652661802128284219164825552} a^{7} + \frac{516210031041334198584183057880855803672143183}{5174775806163593103263309010641421095824127760} a^{6} + \frac{135642664966641268730052216696457644923399883}{431231317180299425271942417553451757985343980} a^{5} - \frac{414135405602413531841934534967531022870978681}{5174775806163593103263309010641421095824127760} a^{4} - \frac{203881049941417179286829459271156517800892373}{1379940214976958160870215736171045625553100736} a^{3} - \frac{176381674336752382541501269554188546134065023}{1034955161232718620652661802128284219164825552} a^{2} - \frac{1182570108864394185327683005994503946189190461}{4139820644930874482610647208513136876659302208} a + \frac{1044512223259489089026508454600992802789733699}{2587387903081796551631654505320710547912063880}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2962968264.51 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.26.64 | $x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{6} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||