Normalized defining polynomial
\( x^{20} - 8 x^{19} + 37 x^{18} - 125 x^{17} + 307 x^{16} - 603 x^{15} + 937 x^{14} - 1076 x^{13} + 1040 x^{12} - 697 x^{11} + 357 x^{10} - 639 x^{9} + 1189 x^{8} - 2217 x^{7} + 2302 x^{6} - 981 x^{5} + 49 x^{4} + 280 x^{3} - 101 x^{2} + 16 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18079489015266793067734899712=-\,2^{10}\cdot 11^{16}\cdot 727^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{10}{23} a^{17} + \frac{10}{23} a^{16} + \frac{3}{23} a^{15} - \frac{8}{23} a^{14} + \frac{8}{23} a^{13} + \frac{9}{23} a^{12} + \frac{2}{23} a^{11} - \frac{8}{23} a^{10} + \frac{7}{23} a^{9} + \frac{6}{23} a^{8} + \frac{9}{23} a^{7} - \frac{8}{23} a^{6} - \frac{2}{23} a^{5} - \frac{9}{23} a^{4} + \frac{5}{23} a^{3} + \frac{2}{23} a^{2} - \frac{5}{23} a - \frac{1}{23}$, $\frac{1}{1511096338095175496887662991} a^{19} + \frac{22560711705438088897918}{1511096338095175496887662991} a^{18} - \frac{22613445369737631311568983}{65699840786746760734246217} a^{17} - \frac{423823174150542103381622100}{1511096338095175496887662991} a^{16} - \frac{127948228840724108823186251}{1511096338095175496887662991} a^{15} - \frac{17136512951880781466177374}{65699840786746760734246217} a^{14} + \frac{171328256049617657360383977}{1511096338095175496887662991} a^{13} + \frac{440525690679563594781591343}{1511096338095175496887662991} a^{12} + \frac{686619275594731430332294246}{1511096338095175496887662991} a^{11} - \frac{551827450896057727714569484}{1511096338095175496887662991} a^{10} + \frac{524504067032866749697812708}{1511096338095175496887662991} a^{9} + \frac{94259445230987389930420906}{1511096338095175496887662991} a^{8} - \frac{608722638820928514673132981}{1511096338095175496887662991} a^{7} + \frac{686132037236608990257008497}{1511096338095175496887662991} a^{6} - \frac{510823270569722763106832555}{1511096338095175496887662991} a^{5} + \frac{608811696463404870928194179}{1511096338095175496887662991} a^{4} - \frac{63906837542256118335089723}{1511096338095175496887662991} a^{3} - \frac{347354166380301695630653253}{1511096338095175496887662991} a^{2} - \frac{10308605508846395026185942}{1511096338095175496887662991} a - \frac{349902957722194590233869359}{1511096338095175496887662991}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1961288.37288 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||