Normalized defining polynomial
\( x^{20} - 5 x^{19} + 4 x^{18} + 16 x^{17} - 39 x^{16} + 31 x^{15} + 84 x^{14} - 295 x^{13} + 71 x^{12} + 751 x^{11} - 862 x^{10} - 469 x^{9} + 1625 x^{8} - 66 x^{7} - 1980 x^{6} + 178 x^{5} + 1712 x^{4} - 482 x^{3} - 1640 x^{2} - 485 x + 67 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18079489015266793067734899712=-\,2^{10}\cdot 11^{16}\cdot 727^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{1}{23} a^{17} + \frac{11}{23} a^{16} + \frac{3}{23} a^{15} + \frac{2}{23} a^{14} + \frac{3}{23} a^{13} + \frac{3}{23} a^{12} + \frac{3}{23} a^{11} + \frac{1}{23} a^{10} + \frac{6}{23} a^{9} + \frac{1}{23} a^{8} - \frac{8}{23} a^{7} - \frac{6}{23} a^{6} + \frac{6}{23} a^{5} + \frac{2}{23} a^{4} - \frac{1}{23} a^{3} + \frac{5}{23} a^{2} + \frac{10}{23} a - \frac{4}{23}$, $\frac{1}{2999165897484223479772769082677} a^{19} + \frac{9861715436344850013912569547}{2999165897484223479772769082677} a^{18} + \frac{772018158722790969139434023479}{2999165897484223479772769082677} a^{17} - \frac{475028992524612666392857610423}{2999165897484223479772769082677} a^{16} + \frac{1469377472428742071939300120236}{2999165897484223479772769082677} a^{15} + \frac{347193872933285695456017515917}{2999165897484223479772769082677} a^{14} + \frac{1181761537211794908242305510567}{2999165897484223479772769082677} a^{13} + \frac{831917447513517430994868185662}{2999165897484223479772769082677} a^{12} + \frac{221191441382363486949776657677}{2999165897484223479772769082677} a^{11} - \frac{959947899834478949931861437648}{2999165897484223479772769082677} a^{10} + \frac{1365801875675047998037790974348}{2999165897484223479772769082677} a^{9} - \frac{910998644265226160731630724079}{2999165897484223479772769082677} a^{8} + \frac{397951458792876931816716354902}{2999165897484223479772769082677} a^{7} - \frac{1097139963411660263952265154774}{2999165897484223479772769082677} a^{6} - \frac{778628927048187380024877516066}{2999165897484223479772769082677} a^{5} + \frac{56402208538269027265622967845}{130398517281922759990120394899} a^{4} + \frac{2185970797090305459681230669}{15071185414493585325491301923} a^{3} + \frac{874038355401905442054888900627}{2999165897484223479772769082677} a^{2} - \frac{1401766570868097882982316030293}{2999165897484223479772769082677} a - \frac{327436550833028578779662544872}{2999165897484223479772769082677}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2087158.6212 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||