Normalized defining polynomial
\( x^{20} - 5 x^{19} + 16 x^{18} - 7 x^{17} - 56 x^{16} + 215 x^{15} - 120 x^{14} - 319 x^{13} + 1056 x^{12} - 228 x^{11} - 1128 x^{10} + 2136 x^{9} + 459 x^{8} - 2142 x^{7} + 1387 x^{6} + 1250 x^{5} - 1499 x^{4} - 595 x^{3} + 401 x^{2} + 102 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18079489015266793067734899712=-\,2^{10}\cdot 11^{16}\cdot 727^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{4}{23} a^{16} - \frac{10}{23} a^{15} + \frac{7}{23} a^{14} + \frac{2}{23} a^{13} - \frac{10}{23} a^{12} - \frac{2}{23} a^{11} - \frac{7}{23} a^{10} - \frac{9}{23} a^{9} - \frac{8}{23} a^{8} - \frac{4}{23} a^{7} + \frac{6}{23} a^{6} + \frac{6}{23} a^{5} + \frac{11}{23} a^{4} - \frac{9}{23} a^{3} + \frac{3}{23} a^{2} + \frac{11}{23} a + \frac{6}{23}$, $\frac{1}{4710154713115403683649897411} a^{19} + \frac{4843769476533346507629640}{4710154713115403683649897411} a^{18} - \frac{2266195839815535566466512893}{4710154713115403683649897411} a^{17} + \frac{1767225143009879822084822448}{4710154713115403683649897411} a^{16} + \frac{1145002232840926412299758275}{4710154713115403683649897411} a^{15} - \frac{1140609758917052684275661605}{4710154713115403683649897411} a^{14} + \frac{1659950244848237232845811675}{4710154713115403683649897411} a^{13} - \frac{81831956686104438371286369}{204789335352843638419560757} a^{12} + \frac{1898323302627994729070541764}{4710154713115403683649897411} a^{11} + \frac{824441897654038790451559378}{4710154713115403683649897411} a^{10} + \frac{681859303969091230751434752}{4710154713115403683649897411} a^{9} - \frac{1803111920948964781424688498}{4710154713115403683649897411} a^{8} + \frac{2284169886033462111694437420}{4710154713115403683649897411} a^{7} + \frac{2162287914330595357370803013}{4710154713115403683649897411} a^{6} + \frac{1064187151589800940836465245}{4710154713115403683649897411} a^{5} + \frac{1154475169185684945278738616}{4710154713115403683649897411} a^{4} + \frac{1266801054165031838077035861}{4710154713115403683649897411} a^{3} - \frac{1969899820868415079099559342}{4710154713115403683649897411} a^{2} - \frac{1837240348084623747708472825}{4710154713115403683649897411} a + \frac{2278040341151598609614125369}{4710154713115403683649897411}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2188619.77218 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||