Normalized defining polynomial
\( x^{20} - 6 x^{19} + 12 x^{18} - 25 x^{17} + 59 x^{16} + 72 x^{15} - 150 x^{14} - 1362 x^{13} + 2836 x^{12} + 1691 x^{11} - 9138 x^{10} + 13507 x^{9} - 25198 x^{8} + 32182 x^{7} + 11567 x^{6} - 84293 x^{5} + 96414 x^{4} - 41364 x^{3} - 3136 x^{2} + 8272 x - 1952 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17948300332081101479956111978679296=-\,2^{10}\cdot 19^{9}\cdot 293^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{6} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{2} a^{13} - \frac{1}{6} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{252} a^{17} - \frac{1}{42} a^{16} + \frac{5}{21} a^{15} + \frac{31}{252} a^{14} + \frac{17}{36} a^{13} + \frac{2}{21} a^{12} + \frac{7}{18} a^{11} - \frac{7}{18} a^{10} - \frac{20}{63} a^{9} - \frac{5}{28} a^{8} - \frac{5}{18} a^{7} - \frac{5}{28} a^{6} + \frac{31}{126} a^{5} - \frac{53}{126} a^{4} + \frac{71}{252} a^{3} - \frac{13}{252} a^{2} + \frac{53}{126} a + \frac{19}{63}$, $\frac{1}{1512} a^{18} - \frac{1}{756} a^{17} + \frac{1}{42} a^{16} + \frac{271}{1512} a^{15} - \frac{19}{56} a^{14} - \frac{1}{378} a^{13} + \frac{349}{756} a^{12} - \frac{5}{36} a^{11} - \frac{181}{378} a^{10} - \frac{365}{1512} a^{9} - \frac{251}{756} a^{8} + \frac{683}{1512} a^{7} + \frac{67}{756} a^{6} + \frac{71}{756} a^{5} + \frac{655}{1512} a^{4} - \frac{233}{1512} a^{3} - \frac{11}{84} a^{2} + \frac{125}{378} a + \frac{38}{189}$, $\frac{1}{8305213351755396755118981888144} a^{19} - \frac{88598974940495381951281507}{519075834484712297194936368009} a^{18} + \frac{727547487223025897969583845}{1038151668969424594389872736018} a^{17} - \frac{260349167215621707657360658721}{8305213351755396755118981888144} a^{16} + \frac{2793725450322164009784783047989}{8305213351755396755118981888144} a^{15} + \frac{1279436940032045407323534354877}{4152606675877698377559490944072} a^{14} - \frac{198594799642558196723587800589}{593229525125385482508498706296} a^{13} + \frac{895758388297822210020256749133}{4152606675877698377559490944072} a^{12} + \frac{329454936955213405732560421807}{1038151668969424594389872736018} a^{11} - \frac{78335789314800193849517845733}{922801483528377417235442432016} a^{10} + \frac{63674854554052577276314767932}{173025278161570765731645456003} a^{9} - \frac{775206591632608052515311636425}{8305213351755396755118981888144} a^{8} - \frac{71163118026781415804613772211}{2076303337938849188779745472036} a^{7} + \frac{94253502450063472539450965395}{1384202225292566125853163648024} a^{6} - \frac{207456652627211955203556205723}{1186459050250770965016997412592} a^{5} - \frac{591974407685567444148765502429}{1186459050250770965016997412592} a^{4} + \frac{194629706640535556951220909334}{519075834484712297194936368009} a^{3} - \frac{2012139963826880921016175171}{74153690640673185313562338287} a^{2} - \frac{122331362428585755345533446291}{346050556323141531463290912006} a + \frac{186049942115934742914223798219}{519075834484712297194936368009}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3759702313.93 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 293 | Data not computed | ||||||