Normalized defining polynomial
\( x^{20} - 8 x^{19} + 26 x^{18} + 19 x^{17} - 438 x^{16} + 1622 x^{15} - 3236 x^{14} + 3813 x^{13} - 4390 x^{12} + 6719 x^{11} - 13133 x^{10} + 21208 x^{9} - 25783 x^{8} + 22104 x^{7} - 10808 x^{6} - 2087 x^{5} + 5523 x^{4} - 2973 x^{3} + 311 x^{2} + 412 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17948300332081101479956111978679296=-\,2^{10}\cdot 19^{9}\cdot 293^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} - \frac{7}{19} a^{17} - \frac{5}{19} a^{16} - \frac{8}{19} a^{15} - \frac{3}{19} a^{14} + \frac{6}{19} a^{13} - \frac{4}{19} a^{12} - \frac{2}{19} a^{11} - \frac{2}{19} a^{10} + \frac{1}{19} a^{9} + \frac{7}{19} a^{8} + \frac{6}{19} a^{7} + \frac{9}{19} a^{6} + \frac{5}{19} a^{5} + \frac{1}{19} a^{4} - \frac{2}{19} a^{3} + \frac{6}{19} a^{2} + \frac{7}{19} a + \frac{3}{19}$, $\frac{1}{343612417696365030794312520287725457483531} a^{19} + \frac{533826269894650078412720091473242394530}{343612417696365030794312520287725457483531} a^{18} + \frac{15173378341584124452074470006140640474099}{343612417696365030794312520287725457483531} a^{17} + \frac{37076898008496229817192468441551930967401}{343612417696365030794312520287725457483531} a^{16} - \frac{162088308729501427571778183040597923112044}{343612417696365030794312520287725457483531} a^{15} - \frac{76945522376988596657119542567454094939060}{343612417696365030794312520287725457483531} a^{14} + \frac{132188342177257972196087691313299701642358}{343612417696365030794312520287725457483531} a^{13} - \frac{5762966385865868731178519961448011913415}{343612417696365030794312520287725457483531} a^{12} - \frac{81188968515599126245008612348120014772935}{343612417696365030794312520287725457483531} a^{11} - \frac{71895258181034788290318038575154767775825}{343612417696365030794312520287725457483531} a^{10} + \frac{38456841179010723468413271751942135172116}{343612417696365030794312520287725457483531} a^{9} - \frac{50670283589994133132030173335298429683126}{343612417696365030794312520287725457483531} a^{8} + \frac{114976044878703980631469504784068939436665}{343612417696365030794312520287725457483531} a^{7} - \frac{122978782771028663047527831564259279057876}{343612417696365030794312520287725457483531} a^{6} - \frac{20645974075617126451549175706594185122626}{343612417696365030794312520287725457483531} a^{5} + \frac{68565146804794861793143190616091194998073}{343612417696365030794312520287725457483531} a^{4} + \frac{7380261923622702373950190698040989705601}{18084864089282370041805922120406603025449} a^{3} + \frac{131165920955133543713414292995248435022798}{343612417696365030794312520287725457483531} a^{2} + \frac{122784431046415773839745154223219375563296}{343612417696365030794312520287725457483531} a + \frac{175291402102310445324734443232469348457}{343612417696365030794312520287725457483531}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2830304798.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 293 | Data not computed | ||||||