Properties

Label 20.6.16676825861...8752.1
Degree $20$
Signature $[6, 7]$
Discriminant $-\,2^{10}\cdot 11^{16}\cdot 23^{2}\cdot 67$
Root discriminant $16.26$
Ramified primes $2, 11, 23, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T846

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 5, 23, -16, -6, 34, -88, -2, 51, 41, -83, 89, -33, -23, -8, 32, -23, 10, 2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 2*x^18 + 10*x^17 - 23*x^16 + 32*x^15 - 8*x^14 - 23*x^13 - 33*x^12 + 89*x^11 - 83*x^10 + 41*x^9 + 51*x^8 - 2*x^7 - 88*x^6 + 34*x^5 - 6*x^4 - 16*x^3 + 23*x^2 + 5*x - 1)
 
gp: K = bnfinit(x^20 - 4*x^19 + 2*x^18 + 10*x^17 - 23*x^16 + 32*x^15 - 8*x^14 - 23*x^13 - 33*x^12 + 89*x^11 - 83*x^10 + 41*x^9 + 51*x^8 - 2*x^7 - 88*x^6 + 34*x^5 - 6*x^4 - 16*x^3 + 23*x^2 + 5*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 2 x^{18} + 10 x^{17} - 23 x^{16} + 32 x^{15} - 8 x^{14} - 23 x^{13} - 33 x^{12} + 89 x^{11} - 83 x^{10} + 41 x^{9} + 51 x^{8} - 2 x^{7} - 88 x^{6} + 34 x^{5} - 6 x^{4} - 16 x^{3} + 23 x^{2} + 5 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1667682586167898216778752=-\,2^{10}\cdot 11^{16}\cdot 23^{2}\cdot 67\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.26$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{27597185381273113} a^{19} - \frac{85822798780397}{253185186984157} a^{18} - \frac{3750654903669878}{27597185381273113} a^{17} + \frac{8165918092043807}{27597185381273113} a^{16} + \frac{13398059899219832}{27597185381273113} a^{15} + \frac{10733879212264172}{27597185381273113} a^{14} + \frac{5726089296000150}{27597185381273113} a^{13} - \frac{1963030233616063}{27597185381273113} a^{12} - \frac{6559261103652253}{27597185381273113} a^{11} - \frac{12603897430315720}{27597185381273113} a^{10} - \frac{3127031155424141}{27597185381273113} a^{9} + \frac{1139278928524169}{27597185381273113} a^{8} + \frac{9339113940230670}{27597185381273113} a^{7} + \frac{10387951924250922}{27597185381273113} a^{6} + \frac{9479691558079964}{27597185381273113} a^{5} + \frac{12117996663922885}{27597185381273113} a^{4} - \frac{7535268927163754}{27597185381273113} a^{3} - \frac{7792586376930855}{27597185381273113} a^{2} + \frac{5565611206314670}{27597185381273113} a - \frac{4666661620828409}{27597185381273113}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17148.8921562 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T846:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 163840
The 649 conjugacy class representatives for t20n846 are not computed
Character table for t20n846 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.4.4930254263.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ $20$ $20$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
2.10.10.2$x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$$2$$5$$10$$C_2^4 : C_5$$[2, 2, 2, 2]^{5}$
11Data not computed
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
67Data not computed