Normalized defining polynomial
\( x^{20} - 8 x^{19} + 48 x^{18} - 212 x^{17} + 747 x^{16} - 2218 x^{15} + 5300 x^{14} - 10874 x^{13} + 17055 x^{12} - 21060 x^{11} + 13387 x^{10} + 9816 x^{9} - 42832 x^{8} + 75706 x^{7} - 50153 x^{6} + 52442 x^{5} + 54384 x^{4} - 27680 x^{3} - 4063 x^{2} + 2748 x + 263 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-164050564045619941441358756052992=-\,2^{20}\cdot 11^{16}\cdot 23^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{487495330430846874138362309760974970599075710943} a^{19} - \frac{63733367432107276237351989612920072492128847596}{487495330430846874138362309760974970599075710943} a^{18} + \frac{40970251833036556260359440809988494860455565764}{487495330430846874138362309760974970599075710943} a^{17} + \frac{228207802844446680432479663092810228924961069443}{487495330430846874138362309760974970599075710943} a^{16} + \frac{62300558596286828018807923405290598100869363882}{487495330430846874138362309760974970599075710943} a^{15} - \frac{78693917878559026762447926509324685287619062081}{487495330430846874138362309760974970599075710943} a^{14} - \frac{80939532973293959614232467539030007926955350061}{487495330430846874138362309760974970599075710943} a^{13} + \frac{129149547153848249429882535009051870839368851836}{487495330430846874138362309760974970599075710943} a^{12} + \frac{203553034786477299216627258945246000623332942037}{487495330430846874138362309760974970599075710943} a^{11} - \frac{237920841601963934553331342471567255695190505281}{487495330430846874138362309760974970599075710943} a^{10} - \frac{8381243642825531843482507962162985884761787635}{487495330430846874138362309760974970599075710943} a^{9} - \frac{34303628186716946250817410421848359512066403298}{487495330430846874138362309760974970599075710943} a^{8} + \frac{103667617575771739853150318530342023321588933497}{487495330430846874138362309760974970599075710943} a^{7} - \frac{105452486409866160383951019729775166827263427429}{487495330430846874138362309760974970599075710943} a^{6} - \frac{199772761717753612568381371369182135371516307991}{487495330430846874138362309760974970599075710943} a^{5} - \frac{4896986140360784139034222503369717242191906192}{11337100707694113352054937436301743502304086301} a^{4} - \frac{117600072330312316082732394437713801195886844512}{487495330430846874138362309760974970599075710943} a^{3} + \frac{189121266570352233453790585013976957077149732888}{487495330430846874138362309760974970599075710943} a^{2} - \frac{5958397092974346802075745137181275886997145450}{487495330430846874138362309760974970599075710943} a + \frac{71763218858672555198111067389283557778012190683}{487495330430846874138362309760974970599075710943}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 212420669.483 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n749 are not computed |
| Character table for t20n749 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.116117348402176.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |