Normalized defining polynomial
\( x^{20} + 10 x^{18} - 28 x^{17} + 21 x^{16} - 182 x^{15} + 184 x^{14} - 152 x^{13} + 463 x^{12} + 256 x^{11} - 514 x^{10} + 878 x^{9} - 624 x^{8} - 490 x^{7} + 1020 x^{6} - 908 x^{5} + 79 x^{4} + 398 x^{3} - 160 x^{2} - 12 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16124369074303569875302350848=-\,2^{20}\cdot 23\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{78} a^{17} - \frac{5}{78} a^{16} + \frac{2}{39} a^{15} + \frac{17}{78} a^{14} - \frac{11}{78} a^{13} + \frac{3}{26} a^{11} + \frac{1}{6} a^{10} - \frac{37}{78} a^{9} + \frac{4}{39} a^{8} - \frac{31}{78} a^{7} - \frac{19}{78} a^{6} + \frac{4}{13} a^{5} - \frac{1}{2} a^{4} + \frac{6}{13} a^{3} - \frac{11}{78} a^{2} - \frac{7}{78} a + \frac{5}{13}$, $\frac{1}{78} a^{18} + \frac{3}{13} a^{16} - \frac{1}{39} a^{15} - \frac{2}{39} a^{14} - \frac{8}{39} a^{13} + \frac{3}{26} a^{12} + \frac{19}{78} a^{11} - \frac{11}{78} a^{10} - \frac{7}{26} a^{9} - \frac{5}{13} a^{8} + \frac{7}{26} a^{7} + \frac{7}{78} a^{6} - \frac{6}{13} a^{5} + \frac{6}{13} a^{4} + \frac{1}{6} a^{3} + \frac{8}{39} a^{2} - \frac{5}{78} a - \frac{1}{13}$, $\frac{1}{557584084250129700700326} a^{19} + \frac{736472485254219797467}{278792042125064850350163} a^{18} + \frac{1431666478361846175286}{278792042125064850350163} a^{17} - \frac{1178988515003940358498}{92930680708354950116721} a^{16} + \frac{1957407977655725586220}{92930680708354950116721} a^{15} - \frac{85596086852002281915989}{557584084250129700700326} a^{14} - \frac{43854640150979371999}{5023280038289456763066} a^{13} - \frac{14197065524213793905917}{278792042125064850350163} a^{12} + \frac{4717141882505072513541}{30976893569451650038907} a^{11} - \frac{53796235217652710797007}{557584084250129700700326} a^{10} + \frac{248867017323210339451933}{557584084250129700700326} a^{9} + \frac{30197348744746965441326}{278792042125064850350163} a^{8} - \frac{52335190292463681353228}{278792042125064850350163} a^{7} + \frac{11422706563436156392902}{30976893569451650038907} a^{6} - \frac{3806594916428224797248}{30976893569451650038907} a^{5} + \frac{58046277415848068298164}{278792042125064850350163} a^{4} - \frac{17150456231311830821305}{61953787138903300077814} a^{3} - \frac{138874469513162095957745}{278792042125064850350163} a^{2} + \frac{32166693751114997593447}{185861361416709900233442} a + \frac{24676888482685426705771}{61953787138903300077814}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5334763.34288 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 327680 |
| The 512 conjugacy class representatives for t20n905 are not computed |
| Character table for t20n905 is not computed |
Intermediate fields
| 5.5.160801.1, 10.8.26477528679424.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.0.1 | $x^{8} + x^{2} - 2 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||