Normalized defining polynomial
\( x^{20} - 4 x^{19} - 22 x^{18} + 81 x^{17} + 169 x^{16} - 626 x^{15} - 341 x^{14} + 2196 x^{13} - 1972 x^{12} - 2961 x^{11} + 7741 x^{10} - 7092 x^{9} - 196 x^{8} + 20087 x^{7} - 35775 x^{6} + 17141 x^{5} + 32384 x^{4} - 60453 x^{3} + 34750 x^{2} - 1938 x - 3249 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1467214799841538367562738193359375=-\,3^{10}\cdot 5^{10}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{12} - \frac{3}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{10} a^{6} + \frac{1}{10} a^{5} + \frac{3}{10} a^{4} - \frac{3}{10} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{3}{10}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{3}{10} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{2} + \frac{1}{10} a - \frac{1}{5}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{20} a^{12} + \frac{1}{20} a^{11} + \frac{1}{20} a^{10} + \frac{9}{20} a^{9} - \frac{1}{4} a^{8} + \frac{2}{5} a^{7} - \frac{7}{20} a^{6} + \frac{3}{20} a^{5} - \frac{1}{10} a^{4} + \frac{7}{20} a^{3} - \frac{3}{20} a^{2} + \frac{3}{20} a - \frac{7}{20}$, $\frac{1}{60} a^{15} + \frac{1}{60} a^{14} + \frac{1}{60} a^{13} + \frac{1}{60} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{19}{60} a^{9} + \frac{3}{10} a^{8} + \frac{3}{20} a^{7} - \frac{17}{60} a^{6} + \frac{13}{30} a^{5} - \frac{11}{60} a^{4} - \frac{9}{20} a^{3} + \frac{1}{12} a^{2} - \frac{29}{60} a + \frac{1}{5}$, $\frac{1}{120} a^{16} - \frac{1}{40} a^{14} - \frac{1}{40} a^{13} + \frac{1}{40} a^{12} + \frac{3}{40} a^{11} + \frac{1}{40} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{4}{15} a^{7} + \frac{2}{15} a^{6} + \frac{19}{60} a^{5} + \frac{5}{12} a^{4} - \frac{31}{120} a^{3} + \frac{59}{120} a^{2} - \frac{1}{12} a + \frac{13}{40}$, $\frac{1}{120} a^{17} - \frac{1}{120} a^{15} - \frac{1}{120} a^{14} + \frac{1}{24} a^{13} - \frac{1}{120} a^{12} - \frac{7}{120} a^{11} + \frac{1}{30} a^{10} - \frac{1}{30} a^{9} + \frac{7}{30} a^{8} - \frac{7}{60} a^{7} - \frac{1}{15} a^{6} - \frac{1}{20} a^{5} + \frac{7}{120} a^{4} - \frac{11}{24} a^{3} - \frac{1}{5} a^{2} + \frac{1}{24} a - \frac{3}{10}$, $\frac{1}{4560} a^{18} - \frac{7}{4560} a^{17} + \frac{3}{760} a^{16} - \frac{1}{152} a^{15} + \frac{23}{1520} a^{14} - \frac{37}{1520} a^{13} + \frac{29}{1520} a^{12} - \frac{11}{2280} a^{11} - \frac{101}{4560} a^{10} + \frac{409}{1140} a^{9} - \frac{367}{760} a^{8} + \frac{23}{2280} a^{7} + \frac{83}{380} a^{6} + \frac{519}{1520} a^{5} - \frac{91}{760} a^{4} + \frac{283}{760} a^{3} + \frac{53}{570} a^{2} - \frac{549}{1520} a - \frac{1}{80}$, $\frac{1}{33072127179928346334960} a^{19} + \frac{2556046326470474617}{33072127179928346334960} a^{18} - \frac{257255848593979769}{123403459626598307220} a^{17} - \frac{9714981541299577421}{4134015897491043291870} a^{16} + \frac{54291000471161850371}{33072127179928346334960} a^{15} - \frac{768599475228039324859}{33072127179928346334960} a^{14} - \frac{539056436688009499033}{33072127179928346334960} a^{13} + \frac{727102269843223878581}{16536063589964173167480} a^{12} - \frac{1761977466635749703861}{33072127179928346334960} a^{11} + \frac{838713839935651333051}{16536063589964173167480} a^{10} - \frac{647515283681956050119}{16536063589964173167480} a^{9} + \frac{8209152974844321756869}{16536063589964173167480} a^{8} - \frac{1512116308063702852561}{4134015897491043291870} a^{7} + \frac{1390478695864587879541}{33072127179928346334960} a^{6} + \frac{3089680725698317855963}{16536063589964173167480} a^{5} + \frac{581086214803892741167}{2756010598327362194580} a^{4} - \frac{665998585620824323678}{2067007948745521645935} a^{3} - \frac{7846727475778579093109}{33072127179928346334960} a^{2} + \frac{2669598356723028002927}{11024042393309448778320} a + \frac{25402289831078015851}{96702126257100427880}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 626711065.375 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||