Normalized defining polynomial
\( x^{20} - 3 x^{19} - 10 x^{18} + 63 x^{17} - 79 x^{16} - 241 x^{15} + 862 x^{14} - 415 x^{13} - 2979 x^{12} + 7740 x^{11} - 6505 x^{10} - 5961 x^{9} + 31475 x^{8} - 59822 x^{7} + 72856 x^{6} - 44088 x^{5} - 28829 x^{4} + 50946 x^{3} - 102634 x^{2} + 7671 x + 59959 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14113234290632913459536084681603=-\,13^{12}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{59} a^{18} + \frac{8}{59} a^{17} + \frac{2}{59} a^{16} + \frac{8}{59} a^{15} - \frac{25}{59} a^{14} - \frac{3}{59} a^{13} + \frac{15}{59} a^{12} - \frac{22}{59} a^{11} + \frac{5}{59} a^{10} + \frac{27}{59} a^{9} + \frac{20}{59} a^{8} - \frac{5}{59} a^{7} - \frac{13}{59} a^{6} + \frac{5}{59} a^{5} - \frac{28}{59} a^{4} + \frac{5}{59} a^{3} + \frac{22}{59} a^{2} + \frac{9}{59} a - \frac{13}{59}$, $\frac{1}{1194025598452395625382737868861108040033345789569} a^{19} - \frac{9633027278887532668715161650135038033627136389}{1194025598452395625382737868861108040033345789569} a^{18} - \frac{344250723862711208389953959784770602470865426228}{1194025598452395625382737868861108040033345789569} a^{17} - \frac{273558100834532567369409567993944114478046361724}{1194025598452395625382737868861108040033345789569} a^{16} + \frac{511476410423596848053060814314044902824617692461}{1194025598452395625382737868861108040033345789569} a^{15} - \frac{568454262397855197168239499509012452584944010888}{1194025598452395625382737868861108040033345789569} a^{14} + \frac{71055410960384817452471593202473293759350962995}{1194025598452395625382737868861108040033345789569} a^{13} - \frac{435699313618048189152027012561359002872517676964}{1194025598452395625382737868861108040033345789569} a^{12} - \frac{575054519323036594951891721232896467865751388917}{1194025598452395625382737868861108040033345789569} a^{11} + \frac{172456923988632211000535066858138682122323602978}{1194025598452395625382737868861108040033345789569} a^{10} - \frac{289765230443832476829696977995671755191931249119}{1194025598452395625382737868861108040033345789569} a^{9} + \frac{170645732828137254469219197570437966859328615050}{1194025598452395625382737868861108040033345789569} a^{8} - \frac{119693066189414816853036101336037223498976050890}{1194025598452395625382737868861108040033345789569} a^{7} + \frac{470732970684477079683769166165035158157671219111}{1194025598452395625382737868861108040033345789569} a^{6} + \frac{63428652562610705605961936380711143642530736095}{1194025598452395625382737868861108040033345789569} a^{5} + \frac{500743623626334110248974126567325627369052124404}{1194025598452395625382737868861108040033345789569} a^{4} - \frac{390990018766643020285342537935222309457642657056}{1194025598452395625382737868861108040033345789569} a^{3} - \frac{93621443225770447114664508784984641656839516792}{1194025598452395625382737868861108040033345789569} a^{2} - \frac{463937360792141747363394912881232761818415716609}{1194025598452395625382737868861108040033345789569} a - \frac{398346568875814229583426773693924292880625902659}{1194025598452395625382737868861108040033345789569}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50653808.4647 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 347 | Data not computed | ||||||