Normalized defining polynomial
\( x^{20} + 2 x^{18} - 4 x^{17} - 59 x^{16} + 329 x^{15} - 546 x^{14} - 99 x^{13} + 816 x^{12} - 7011 x^{11} + 9027 x^{10} - 14854 x^{9} + 16916 x^{8} - 10119 x^{7} + 17874 x^{6} - 11823 x^{5} + 16942 x^{4} - 15102 x^{3} + 5145 x^{2} - 1131 x - 2661 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-129446615848929357898877592247947=-\,3^{7}\cdot 97^{4}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{107426455988866554133794518036952964643235766327} a^{19} + \frac{17093426908564235993975502574471546070038199140}{107426455988866554133794518036952964643235766327} a^{18} + \frac{30068267606627216526354480283455430415215866569}{107426455988866554133794518036952964643235766327} a^{17} + \frac{1141446303534464229423988753519155381270292049}{107426455988866554133794518036952964643235766327} a^{16} + \frac{2305635739268641097202592704168537266647487623}{107426455988866554133794518036952964643235766327} a^{15} + \frac{4569242948559342406812268710364574801902206659}{107426455988866554133794518036952964643235766327} a^{14} + \frac{35394691905879475813577789960368206017768430392}{107426455988866554133794518036952964643235766327} a^{13} - \frac{188548743042289575519287939077786855797581396}{418001774275745346824103183023163286549555511} a^{12} - \frac{33760981991807242152086129288476618784783118135}{107426455988866554133794518036952964643235766327} a^{11} - \frac{1363460752290063237495672363528693291524043008}{107426455988866554133794518036952964643235766327} a^{10} - \frac{20877417245070473262238223684559561303599850101}{107426455988866554133794518036952964643235766327} a^{9} + \frac{12026349399795620101279308830335463968363347658}{107426455988866554133794518036952964643235766327} a^{8} - \frac{40159398161894894123432887457391175037048036002}{107426455988866554133794518036952964643235766327} a^{7} + \frac{43211731451057742883861923208503318499005471756}{107426455988866554133794518036952964643235766327} a^{6} + \frac{1498001020151134470851123843106519663949599228}{107426455988866554133794518036952964643235766327} a^{5} - \frac{37205472514493393234707525142032393365278935894}{107426455988866554133794518036952964643235766327} a^{4} - \frac{23334111149067005491821977144666760836253693908}{107426455988866554133794518036952964643235766327} a^{3} - \frac{16620406943175078061144801677818291828779163137}{107426455988866554133794518036952964643235766327} a^{2} - \frac{48875661414601330054825655829672285964501268441}{107426455988866554133794518036952964643235766327} a + \frac{49351138699817043703358231521047795501797021737}{107426455988866554133794518036952964643235766327}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102873929.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n845 are not computed |
| Character table for t20n845 is not computed |
Intermediate fields
| 5.5.160801.1, 10.8.698137963227.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||