Normalized defining polynomial
\( x^{20} + 2 x^{18} + 15 x^{16} - 129 x^{15} - 310 x^{14} + 1078 x^{13} - 868 x^{12} - 2445 x^{11} + 4350 x^{10} + 8799 x^{9} + 2111 x^{8} - 7238 x^{7} - 7224 x^{6} - 4740 x^{5} - 245 x^{4} + 1095 x^{3} + 924 x^{2} + 262 x + 13 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12599457394661531371809189999616=-\,2^{10}\cdot 61^{7}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2867} a^{18} - \frac{949}{2867} a^{17} + \frac{869}{2867} a^{16} - \frac{1359}{2867} a^{15} - \frac{1119}{2867} a^{14} + \frac{1289}{2867} a^{13} - \frac{1406}{2867} a^{12} + \frac{1064}{2867} a^{11} + \frac{972}{2867} a^{10} + \frac{1295}{2867} a^{9} - \frac{765}{2867} a^{8} - \frac{164}{2867} a^{7} - \frac{1320}{2867} a^{6} - \frac{1216}{2867} a^{5} - \frac{176}{2867} a^{4} - \frac{461}{2867} a^{3} - \frac{1234}{2867} a^{2} - \frac{559}{2867} a + \frac{1223}{2867}$, $\frac{1}{2817345550161939754645228019698291190137} a^{19} - \frac{325017645546137189773304267551304301}{2817345550161939754645228019698291190137} a^{18} + \frac{1230435874117010516567231693262106001519}{2817345550161939754645228019698291190137} a^{17} - \frac{832951596852775365674146310674837903868}{2817345550161939754645228019698291190137} a^{16} + \frac{17900473119330421258437275495455623343}{46185992625605569748282426552431003117} a^{15} - \frac{1006360363122126340973698732733287775716}{2817345550161939754645228019698291190137} a^{14} - \frac{691860725386001713524682004955566806041}{2817345550161939754645228019698291190137} a^{13} - \frac{855988618193102222311498956272010446130}{2817345550161939754645228019698291190137} a^{12} + \frac{178596107137226228186348781088792838937}{2817345550161939754645228019698291190137} a^{11} - \frac{172188115791968813095108930379469386757}{2817345550161939754645228019698291190137} a^{10} - \frac{434522612016568588966683996456257887689}{2817345550161939754645228019698291190137} a^{9} + \frac{1127133384159564065952524496487183185327}{2817345550161939754645228019698291190137} a^{8} + \frac{1284816717736913604609072039117008867653}{2817345550161939754645228019698291190137} a^{7} - \frac{139044601168338619502982667338788830402}{2817345550161939754645228019698291190137} a^{6} + \frac{248162247399209931889051912549201813658}{2817345550161939754645228019698291190137} a^{5} + \frac{795610555472801507772060949773071161935}{2817345550161939754645228019698291190137} a^{4} + \frac{314515634124646042707824090845385843299}{2817345550161939754645228019698291190137} a^{3} + \frac{596691269635719261806957880586885846691}{2817345550161939754645228019698291190137} a^{2} + \frac{860997869527402147043463915707594777734}{2817345550161939754645228019698291190137} a + \frac{1082183843811671601809343352639876869018}{2817345550161939754645228019698291190137}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72170893.0723 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 40 conjugacy class representatives for t20n365 |
| Character table for t20n365 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 397 | Data not computed | ||||||